
TEST REPORT

PERFORMANCE TESTING
ON
240 TUBE FITTING CONNECTIONS
FOR
MR. ERAN PINTEL
HAM-LET CORPORATION
WYLE REPORT NO. 50666-01

HAM-LET Advanced Control Technology 5275-B Naiman Parkway Solon, OH 44136

REVISIONS

REV.	DATE	PAGE OR PARAGRAPH AFFECTED	BY	APP'L	DESCRIPTION OF CHANGES
A	08/06/04	Cover	DB 879/64	AM 00109104 124 84/04	Added "Revision A" and date and added "FOR MR. ERAN PINTEL" to the report title.
A	08/06/04	Page 4, Section 1.3	819/04	2.m 28/09/04/4 124 8/9/04	Added "(per AISI 316)" after Stainless Steel in first sentence.
A	08/06/04	Pages B-6 through B-9	DB	4.m 08/09/04 18/19/4 1849/9/04	Added column of data titled "@ 1.25 Turns (Ft-lbs) W/O Stop Collar*" and note at bottom of tables for the 3/4-inch and 1-inch tables.
A	08/06/04	Page E-2	DB Sigloy	A.M 08/09/04 08/09/9/9/ TUN 8/9/04	Added "See summary result." to notes at bottom of table.
A	08/06/04	Page F-2	DB 8/9/04	4.M 90109/04/4 Tet 8/9/04	Added "See summary result." to note at bottom of table.

7800 Highway 20 West Huntsville, Alabama 35806 Phone (256) 837-4411 • Fax (256) 830-2109 www.wylelabs.com

REPORT NO.:	50666-01
WYLE JOB NO.:	50666
CLIENT P.O. NO.:	23880
CONTRACT:	N/A
TOTAL PAGES (INCL	UDING COVER): 119
DATE:	June 16, 2004

Revision A: August 6, 2004

TEST REPORT PERFORMANCE TESTING ON 240 TUBE FITTING CONNECTIONS FOR MR. ERAN PINTEL HAM-LET CORPORATION WYLE REPORT NO. 50666-01

A

HAM-LET Advanced Control Technology 5275-B Naiman Parkway Solon, OH 44136

STATE OF ALABAMA COUNTY OF MADISON	Wyle shall have no liability for damages of any kind to person or property, including special or consequential damages, resulting from Wyle's providing the services covered by this report.
Robert L. Porter, Department Manager , being duly sworn, deposes and says: The information contained in this report is the result of complete and carefully conducted testing and is to the beat of his knowledge true and correct in all respects.	TEST BY: David R. Bailey, Project Engineer Date
Les fan T. J.	APPROVED BY: Anthony Murks, Engineer Date
SUBSCRIBED and sworn to before me this 18th day of	WYLE Q.A.: Color of the Color o
Notary Public ir. and for the State of Alabama of Large My Commission expires My Commission expires	(pap)
SEAL	Cert No. 845 02

COPYRIGHT BY WYLE LABORATORIES. THE RIGHT TO REPRODUCE, COPY, EXHIBIT, OR OTHERWISE UTILIZE ANY OF THE MATERIAL CONTAINED HEREIN WITHOUT THE EXPRESS PRIOR PERMISSION OF WYLE LABORATORIES IS PROHIBITED. THE ACCEPTANCE OF A PURCHASE ORDER IN CONNECTION WITH THE MATERIAL CONTAINED HEREIN SHALL BE EQUIVALENT TO EXPRESS PRIOR PERMISSION.

TABLE OF CONTENTS

		Page No
1.0	INTRODUCTION	4
	1.1 Scope	4
	1.2 References	4
	1.3 Test Specimen Description	4
	1.4 Summary	4
2.0	TEST PROCEDURES AND RESULTS	5
	2.1 Pneumatic Test	5
	2.2 Hydrostatic Test	6
	2.3 Rotary Flex Test	6
	2.4 Flex Fatigue Test	7
	2.5 Thermal Cycling Test	8
	2.6 Elevated Temperature Soak Test2.7 Vibration Test	9
	2.8 Tensile Test	10
	2.9 Hydrostatic Burst Test	10
	2.10 Hydraulic Impulse Test	11
3.0	TEST EQUIPMENT AND INSTRUMENTATION	12
4.0	QUALITY ASSURANCE PROGRAM	12
	<u>ATTACHMENTS</u>	
A	PHOTOGRAPHS	A-1
В	PNEUMATIC TEST DATA	B-1
C	HYDROSTATIC TEST DATA	C-1
D	IMPULSE TEST DATA	D-1
Е	HYDROSTATIC BURST TEST DATA	E-1
F	TENSILE TEST DATA	F-1
G	ROTARY FLEX TEST DATA	G-1

Page No. 3 Test Report No. 50666-01

Revision A

TABLE OF CONTENTS (Continued)

ATTACHMENTS (Continued)

		<u>Page No.</u>
Н	FLEX FATIGUE TEST DATA	H-1
I	HIGH TEMPERATURE THERMAL CYCLE DATA	I-1
J	LOW TEMPERATURE THERMAL CYCLE DATA	J-1
K	ELEVATED SOAK TEST DATA	K-1
L	VIBRATION TEST DATA	L-1
M	ELEVATED TEMPERATURE CIRCULAR CHARTS	M-1
N	VIBRATION TEST DATA SHEETS AND PLOTS	N-1
O	TENSILE TEST DATA SHEET	O-1
P	TYPICAL STRAIN CALCULATION DATA SHEETS	P-1
Q	MATERIAL DATA SHEETS FOR STAINLESS STEEL TUBING	Q-1
R	INSTRUMENTATION EQUIPMENT SHEETS	R-1

1.0 INTRODUCTION

1.1 Scope

This report documents the test procedures followed and the results obtained during Performance Testing of 240 Stainless Steel Compression Style Tube Fitting Connections. Four sizes of Tube Fittings were tested (1/4-inch, ½-inch, ¾-inch and 1-inch). Sixty samples of each size were submitted for testing. Testing was performed at Wyle Laboratories' Huntsville, Alabama, Test Facility from March 8, 2003, to June 10, 2004.

1.2 References

- HAM-LET Purchase Order No. 23880
- Wyle Laboratories' Quotation No. 542/023874/DB
- Wyle Laboratories' Quality Assurance Program Manual, Revision 2
- "Appendix A: Tube Fitting Test Procedure" as an Attachment to "GE Specification 362A2195"
- ANSI/NCSL Z540-1, "Calibration Laboratories and Measuring and Test Equipment, General Requirements"
- ASTM F1387-99
- SAE MA2003, "Rotary Flexure of Hydraulic Tubing Joints and Fittings"
- ISO 10012-1, "Quality Assurance Requirements for Measuring Equipment"
- MIL-STD-45662A, "Calibration System Requirements"

1.3 Test Specimen Description

Test specimens supplied by HAM-LET, were Stainless-Steel (per AISI 316) A Mechanically-Attached Hydraulic Tube Fittings – Compression Style. Each specimen consisted of a Nut, a Front Ferrule and a Rear Ferrule. Photographs of the test specimens are presented in Attachment A of this report.

1.4 Summary

The test specimens were successfully subjected to the following environmental conditions.

- Pneumatic Proof Test
- Hydrostatic Proof Test
- Rotary Flex Test

1.0 INTRODUCTION (Continued)

1.4 Summary (Continued)

- Flex Fatigue Test
- Tensile Test
- Temperature Cycling Test
- Elevated Temperature Soak Test
- Vibration Test
- Hydraulic Impulse Test
- Burst Pressure Test
- Repeated Assembly (combined with Impulse and Flex Fatigue)

The sequence of testing was performed in accordance with Flow Chart Rev. 09 presented in Appendix A, Rev. 04, of GE Specification 362A2195, Rev. 0. This Flow Chart, supplied by GE, was derived from the ASTM F1387 test specification.

Changes to the test procedure were incorporated, as discussed with GE, as testing progressed. Each change is discussed as it relates to the specific test it affected. Specimens identified in the following attachments that either did not complete the test or that became inoperative were because of procedural adjustments, with two exceptions. One specimen in the Tensile Test fell short of the minimum yield strength. The second exception occurred as a result of tubing failures during the Burst Test. Test details are reported in that Attachment. After testing, all specimens were returned to HAM-LET for review.

The test results contained herein apply only to the test specimens identified in this report.

2.0 TEST PROCEDURES AND RESULTS

2.1 Pneumatic Test

Prior to performing this test, each specimen was identified and assembled in a manifold configuration. The manifold configuration, which was specified in Appendix A, Rev. 01, of GE Specification 362A2195, Rev. 0, allowed for identification of all test items. The process was repeated for each of the four test sizes.

The assembly process was performed by installing the test specimens onto supplied stainless steel tubing lengths (see Attachment O of this report for the Tubing Material Certifications). The specimens were installed onto mating connectors, including stop collars/rings in accordance with Appendix A of GE Specification 362A2195, Section 6.2.

2.1 Pneumatic Test (Continued)

The installation process included: establishing firm finger-tight conditions, marking the location at that point, tightening the specimen 1.25 turns, and verifying if the stop collar was loose or tight. The torque to achieve this point was recorded. If the stop collar was loose, the specimen was further tightened until the stop collar was captured. The torque value was updated in this event. These measurements were documented and are presented in the Pneumatic Test Data Sheet in Attachment B.

After complete assembly of each manifold, the manifolds were submerged under water and pressurized to 100 psig for a minimum of 5 minutes. No leakage was noted. The pressure was increased to 500 psig and maintained for 5 minutes. No leakage was noted. This test was repeated for each of the four sizes. The manifolds were then disassembled and prepared for the Hydrostatic Test.

Photographs of the test setup and in-process testing are presented in Attachment A. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

2.2 Hydrostatic Test

After disassembly, the stop collars were removed from the test setup. The specimens were then re-assembled in accordance with Appendix A of the GE Specification, Section 6.3. This completed the first of many make and break (Repeated Assembly) requirements.

The manifolds were initially pressurized to 100 psig with water for five minutes. No leakage was noted.

Each manifold was then hydrostatically pressurized to 125% rated pressure (11,250 for the 1/4 inch, 7650 for the 1/2 inch, 7350 for the 3/4 inch, and 5400 psig for the 1 inch). Test results are presented in Attachment C.

Photographs of the test setup and in-process testing are presented in Attachment A. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

2.3 Rotary Flex Test

Six samples of each size were subjected to the Rotary Flex requirements specified in Appendix A, Rev. 04, of GE Specification 362A2195, Rev. 0. The specimens were tested while pressurized with water to 500 psig. Each specimen was instrumented with two strain gages on the tube at approximately 0.125 inch away from the nut. The gages were located 90 degrees apart.

2.3 Rotary Flex Test (Continued)

With GE approval, an acceptable stress level was reached that was in direct relation to SAE Test Method MA2003, Sections 4.2.2 to 4.2.4, which specifically addresses tube breakage prior to reaching the required number of cycles. This method allowed for reduction of the stress level based on performance achieved. Testing was performed at a minimum of 1750 RPM until 1,000,000 cycles were completed or until the test was halted.

Immediately following the Rotary Flex Testing, the specimens reaching 1,000,000 cycles were subjected to a Hydrostatic Test with no anomalies noted.

The final stress levels applied were (units in micro strain) 760 for the 1/4-inch, 679 for both the 1/2-inch and 3/4-inch, and 810 for the 1-inch.

Typical Stress calculations are presented in Attachment P. The test results for the Rotary Flex specimens are presented in Attachment G.

Photographs of the test setup and in-process testing are presented in Attachment A. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

2.4 Flex Fatigue Test

Six samples of each size were subjected to the Flex Fatigue requirements specified in Appendix A of GE Specification 362A2195. The test specimens were tested while pressurized with water. Each specimen was instrumented with two strain gages on the tube at approximately 0.125 inch away from the nut. The gages were located 180 degrees apart.

The specimens were subjected to a preset stress level according to the tube size. The levels were (units in microstrain): 1155 for 1/4-inch, 1098 for 1/2-inch, 823 for 3/4-inch, and 805 for 1-inch. This stress level was established and then the test pressure was applied. Pressure and strain were monitored during the flex cycles and strain was recorded at periodic intervals to verify the stress levels.

The specimens were then exercised in a side-to-side motion, with the maximum strain applied at each endpoint. The return to mid-point passed through null or zero stress before going to the opposite direction. This motion completed one cycle, and 30,000 cycles were performed. The flexure rate was established at one per second.

2.4 Flex Fatigue Test (Continued)

Half of the specimens were also subjected to repeated assembly. After 7500 cycles, testing was stopped and the specimens were disassembled and reassembled two times in accordance with Appendix A of GE Specification 362A2195, Section 6.3. After completion of 30,000 cycles, the specimens were re-subjected to the Hydrostatic Test. Passing the hydrostatic function is noted in the Test Data Sheet in Attachment H.

Immediately following the Flex Fatigue Testing, the specimens reaching 30,000 cycles were subjected to a Hydrostatic Test with no anomalies noted.

Photographs of the test setup and in-process testing are presented in Attachment A. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

2.5 Thermal Cycling Test

The test specimens were assembled into a continuous manifold configuration with the permission of GE. This allowed the conditioning fluid to flow completely through the manifold. This assembly was repeated for each of the four sizes. Photographs of the assembly are presented in Attachment A.

Testing was performed in two phases. The first phase subjected the manifold to high temperature (500°F) conditions for two hours followed by a quick (<2 minutes) transient to ambient conditions (70°F). During the entire process, the manifold was pressurized at 700 psig for the high temperature and 200 psig for the ambient temperature. This procedure was repeated for three complete cycles. The manifold was monitored for leakage during the test. For both phases of the test program, a thermocouple was mounted directly to the tube wall mid-way along the manifold length. This thermocouple was used to time the saturation period and to indicate when to begin the transient. A second thermocouple was attached at the discharge nozzle just beyond the outlet to measure the fluid temperature during the test program. This thermocouple was utilized as the indicator for completion of the temperature transient.

The second phase was to subject the manifold to low temperature (0°F) for a period of two hours while pressurized with nitrogen at 200 psig. This was followed by a quick transient to 70°F in less than two minutes, using hot water at a minimum of 200 psig. This process was repeated for three complete cycles. The manifold was monitored for leakage during the temperature exposure periods.

2.5 Thermal Cycling Test (Continued)

After thermal cycling was completed, the manifolds were hydrostatically checked and the results were posted on Test Data Sheets, which are presented in Attachments I and J. No anomalies were noted.

Immediately following the Thermal Cycling Testing, the specimens were subjected to a Hydrostatic Test with no anomalies noted.

Photographs of the test setup and in-process testing are presented in Attachment A. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

2.6 Elevated Temperature Soak Test

The test manifolds were re-configured for the proper test specimens in a continuous flow manifold. The specimens were placed in a test chamber and pressurized to 250 psig. This pressure was maintained during the test period. The chamber temperature was elevated to 500°F and maintained for 100 hours. The specimens were checked periodically to verify that no leakage was occurring.

Immediately following the Elevated Temperature Soak Testing, the sections were subjected to a Hydrostatic Test with no anomalies noted.

Photographs of the test setup and in-process testing are presented in Attachment A. Copies of the circular charts for the exposure period are presented in Attachment M. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

2.7 Vibration Test

The tubing manifolds were re-configured into three sections in accordance with Figure 7.11A of Appendix A, Rev. 04, of GE Specification 362A2195, Rev. 0. Each size of tubing was mounted to specific dimensions regarding the spacing between centers. Each section contained one union, having two specimens in the middle of the mounting configuration for a total of six specimens per size.

For measurement of specimen vibration characteristics, a miniature accelerometer was mounted to the union in the center of the section. This accelerometer was then rotated each time the vibration was applied in each of the three directions.

2.7 Vibration Test (Continued)

The specimens were pressurized and monitored for leakage during the entire vibration program. The pressure used for the 1/4-inch was 7500 psig, for 1/2-inch was 5100 psig, for the 3/4-inch was 4900 psig, and for the 1-inch was 3600 psig.

The specimens were then subjected to variable frequency vibration from 4 to 60 Hz, at 5 minutes per frequency. The test levels and durations are presented in the Vibration Data Sheets in Attachment L. Immediately following the Variable Frequency Testing, the sections were subjected to a Hydrostatic Test with no anomalies noted.

The specimens were then subjected to Endurance Testing based on any resonance found during the Variable Frequency Test, or a maximum of 60 Hz if none were noted. For this test, there were no resonances noted and all Endurance Testing was performed at 60 Hz. The test levels and durations are presented in the Vibration Data Sheets in Attachment L. Immediately following the Endurance Testing, the sections were subjected to a Hydrostatic Test with no anomalies noted.

Photographs of the test setup and in-process testing are presented in Attachment A. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

2.8 Tensile Test

Six specimens of each size were subjected to Tensile Testing after being subjected to Pneumatic and Hydrostatic Testing. Testing was performed under subcontract and details of the test results are presented in Attachment F. One 3/4-inch sample released before achieving the required minimum value and is reported in the Test Data Sheet. All other samples met or exceeded the minimum tensile strength.

2.9 Hydrostatic Burst Test

Eight specimens of each size were subjected to Hydrostatic Burst Testing after having first successfully passed Pneumatic, Hydrostatic, Thermal Cycle and Elevated Temperature Soak Tests.

Four specimens were tested at the same time in accordance with Figure 7.4A of Appendix A, Rev. 04, of GE Specification 362A2195, Rev. 0. This configuration placed two tube sections, with two specimens each, end to end with a union in the middle and a stop plug on one end. The assembly was then pressurized to four times the working pressure of the size being tested.

2.9 Hydrostatic Burst Test (Continued)

- 30,000 psig for the 1/4-inch
- 20,400 psig for the 1/2-inch
- 16,600 psig for the 3/4-inch
- 14,400 psig for the 1-inch

Each assembly was pressurized at a rate not exceeding 25,000 psig/minute. Pressure was then held for one minute.

All components for the 3/4-inch and 1/4-inch sizes passed. The tubing ruptured on one section of the 1/2-inch and 1-inch specimens prior to reaching the required minimum. This test involved 4 of the 8 specimens. Results are indicated in the Test Data Sheets in Attachment E. Tubing Rupture is identified in the results column as Failed* with explanation as to cause.

Photographs of the test setup and in-process testing are presented in Attachment A. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

2.10 Hydraulic Impulse Test

Six specimens of each size were subjected to the Hydraulic Impulse Test. Two specimens on a common tube were attached to a manifold block. Three common tubes were attached to the block, making a total of six specimens.

The specimens were filled with MIL-H-5606 hydraulic fluid and subjected to one-million pressure cycles. Pressures were 9975 to 1500 psig for the 1/4-inch, 6783 to 1120 psig for the 1/2-inch, 6517 to 980 psig for the 3/4-inch and 4788 to 720 psig for the 1-inch. The cycle rate was controlled to less than 75 cycles per minute. Half of the specimens were subjected to Repeated Assembly after every 250,000 cycles.

The test specimens met the criteria for no leakage after completing one-million cycles. Results are indicated in the Test Data Sheets in Attachment D.

Photographs of the test setup and in-process testing are presented in Attachment A. The Instrumentation Equipment Sheets for the test setup are presented in Attachment R.

3.0 TEST EQUIPMENT AND INSTRUMENTATION

All instrumentation, measuring, and test equipment used in the performance of this test program were calibrated in accordance with Wyle Laboratories' Quality Assurance Program, which complies with the requirements of ANSI/NCSL Z540-1, ISO 10012-1, and Military Specification MIL-STD-45662A. Standards used in performing all calibrations are traceable to the National Institute of Standards and Technology (NIST) by report number and date. When no national standards exist, the standards are traceable to international standards or the basis for calibration is otherwise documented.

4.0 QUALITY ASSURANCE PROGRAM

All work performed on this test program was completed in accordance with Wyle Laboratories' Quality Assurance Program.

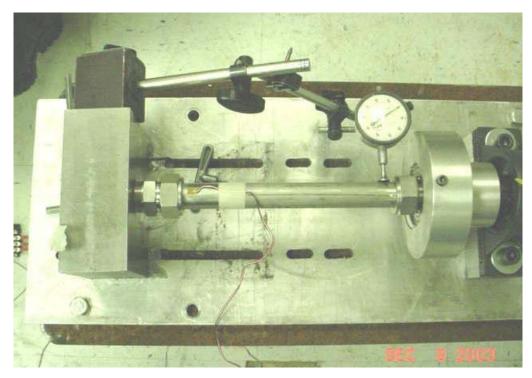
The Wyle Laboratories, Huntsville Facility, Quality Management System is registered in compliance with the ISO-9001 International Quality Standard. Registration has been completed by Quality Management Institute (QMI), a Division of Canadian Standards Association (CSA).

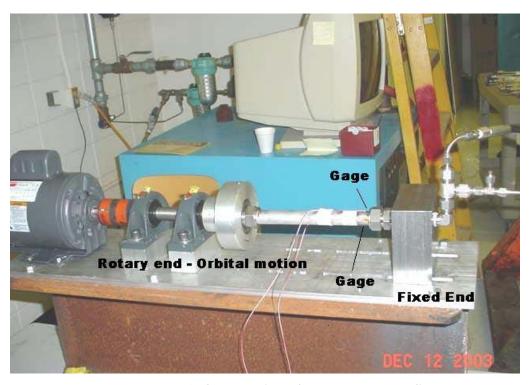
Wyle Laboratories is accredited (Certificate No. 845.02) by the American Association for Laboratory Accreditation (A2LA), and the results shown in this test report have been determined in accordance with Wyle's scope of accreditation unless otherwise stated in the report.

Page No. A-1 Test Report No. 50666-01

ATTACHMENT A PHOTOGRAPHS

Photograph No. 1. Typical Torque and Assembly Technique


Photograph No. 2. Index Marking for Turn Identification


Photograph No. 3. Verifying Stop Collar Tightness

Photograph No. 4. Typical View of Manifold for Pneumatic Proof Test

Photograph No. 5. Rotary Flex Setup

Photograph No. 6. Overall View of Rotary Flex Test Setup

Photograph No. 7. Typical Flex Fatigue Mechanical Setup

Photograph No. 8. Complete Setup of Gages, Pressure and Control System

Photograph No. 9. Typical Setup for Temperature Cycle Testing

Photograph No. 10. Low Temperature Condition Setup

Photograph No. 11. Typical Hydraulic Impulse Mechanical Setup

Photograph No. 12. Hydraulic Impulse Control System

Photograph No. 13. Typical Vibration Test Setup

Photograph No. 14. Test Chamber for Elevated Temperature Test

Photograph No. 15. Manifolds Installed in Test Chamber

Photograph No. 16. Typical Burst Test Manifold Setup

Photograph No. 17. High-Pressure Pump for Burst Test

ATTACHMENT B PNEUMATIC TEST DATA

TEST NO. 5.1 Data Collection Requirements for Pneumatic Proof Tests

GE Torque Information in ft/lbs: A=1.25 turns; Tube Stickage rating E=easy/M=moderate/D=difficult /F=failure Comments: Tested @ 125% of Rating

1/4-Inch

		Torque Va	alues	
New I.D.	@ 1.25 Turns	Seat Collar	If = N, record	A 4
HAM-LET	Ft-lbs	(Y/N)	Ft-lbs	Accept
1	12.63	Y		Pass
2	12.60	Y		Pass
3	16.29	Y		Pass
4	11.38	Y		Pass
5	16.49	Y		Pass
6	13.25	Y		Pass
7	12.57	Y		Pass
8	13.14	Y		Pass
9	14.99	Y		Pass
10	10.66	N	12.87	Pass
11	14.19	Y		Pass
12	11.65	Y		Pass
13	11.26	Y		Pass
14	17.53	Y		Pass
15	10.55	Y		Pass
16	11.89	Y		Pass
17	12.83	Y		Pass
18	12.16	Y		Pass
19	14.00	Y		Pass
20	15.19	Y		Pass
21	15.72	Y		Pass
22	16.71	Y		Pass
23	11.92	Y		Pass
24	12.13	Y		Pass
25	14.81	Y		Pass
26	16.18	Y		Pass
27	15.15	Y		Pass
28	17.02	Y		Pass
29	14.10	Y		Pass
30	13.29	Y		Pass
31	13.07	Y		Pass
32	11.56	Y		Pass
33	15.48	Y		Pass

<u>TEST NO. 5.1</u> (Continued) Data Collection Requirements for Pneumatic Proof Tests

GE Torque Information in ft/lbs: A=1.25 turns; Tube Stickage rating E=easy/M=moderate/D=difficult /F=failure Comments: Tested @ 125% of Rating

1/4-Inch (Continued)

		Torque Va	alues	
New I.D. HAM-LET	@ 1.25 Turns Ft-lbs	Seat Collar (Y/N)	If = N, record Ft-lbs	Accept
34	12.78	Y	1 1-105	Pass
35	12.78	Y		Pass
36	15.19	Y		Pass
37	13.19	Y		Pass
38	12.60	Y		Pass
39	12.60	Y		Pass
40	13.40	Y		Pass
41	14.81	Y		Pass
42	12.19	Y		Pass
43	12.50	Y		Pass
44	12.74	Y		Pass
45	12.29	Y		Pass
46	12.01	Y		Pass
47	10.82	Y		Pass
48	13.10	Y		Pass
49	11.68	Y		Pass
50	13.15	N	15.01	Pass
51	13.82	Y		Pass
52	12.54	Y		Pass
53	14.94	Y		Pass
54	12.68	Y		Pass
55	13.46	Y		Pass
56	13.35	Y		Pass
57	11.54	Y		Pass
58	14.12	Y		Pass
59	12.74	Y		Pass
60	11.27	Y		Pass

TEST NO. 5.1

Data Collection Requirements for Pneumatic Proof Tests

GE Torque Information in ft/lbs: A=1.25 turns; Tube Stickage rating E=easy/M=moderate/D=difficult /F=failure Comments: Tested @ 125% of Rating

1/2-Inch

		Torque Va	alues	
New I.D.	@ 1.25 Turns	Seat Collar	If = N, record	A 4
HAM-LET	Ft-lbs	(Y/N)	Ft-lbs	Accept
1	41.60	N	45.50	Pass
2	47.08	Y		Pass
3	35.58	Y		Pass
4	42.44	Y		Pass
5	44.64	N	44.64	Pass
6	46.20	N	49.40	Pass
7	47.00	N	50.45	Pass
8	39.15	N	50.01	Pass
9	40.75	Y		Pass
10	38.65	N	42.72	Pass
11	46.18	Y		Pass
12	42.90	N	49.03	Pass
13	40.66	N	45.42	Pass
14	37.31	Y		Pass
15	39.75	N	43.47	Pass
16	42.75	N	47.47	Pass
17	36.00	N	38.35	Pass
18	38.98	Y		Pass
19	38.16	N	44.75	Pass
20	34.96	N	40.16	Pass
21	35.36	N	38.64	Pass
22	35.76	N	39.64	Pass
23	39.93	Y		Pass
24	39.16	N	40.66	Pass
25	38.04	N	42.93	Pass
26	41.98	Y		Pass
27	40.00	N	41.77	Pass
28	50.16	Y		Pass
29	56.69	Y		Pass
30	42.31	N	49.57	Pass
31	34.75	N	39.04	Pass
32	46.86	N	50.18	Pass
33	39.00	N	39.49	Pass

TEST NO. 5.1 (Continued)

Data Collection Requirements for Pneumatic Proof Tests

GE Torque Information in ft/lbs: A=1.25 turns; Tube Stickage rating E=easy/M=moderate/D=difficult /F=failure Comments: Tested @ 125% of Rating

<u>1/2-Inch</u> (Continued)

		Torque Va	alues	
New I.D. HAM-LET	@ 1.25 Turns Ft-lbs	Seat Collar (Y/N)	If = N, record Ft-lbs	Accept
34	43.55	N	46.81	Pass
35	35.30	N	39.37	Pass
36	39.25	N	43.53	Pass
37	39.31	N	49.27	Pass
38	39.19	N	48.23	Pass
39	41.29	N	44.46	Pass
40	36.05	N	41.15	Pass
41	50.00	Y	12120	Pass
42	37.54	N	38.92	Pass
43	49.00	N	49.39	Pass
44	43.95	N	48.47	Pass
45	34.72	N	41.26	Pass
46	39.12	N	47.08	Pass
47	36.66	N	43.17	Pass
48	35.58	N	40.76	Pass
49	39.04	N	39.04	Pass
50	36.83	Y		Pass
51	41.66	N	44.27	Pass
52	39.54	N	50.00	Pass
53	46.00	N	47.66	Pass
54	40.87	N	44.55	Pass
55	37.99	N	50.00	Pass
56	37.86	N	45.12	Pass
57	37.98	Y		Pass
58	38.46	N	43.31	Pass
59	37.84	N	44.57	Pass
60	35.61	N	40.04	Pass

TEST NO. 5.1

Data Collection Requirements for Pneumatic Proof Tests

GE Torque Information in ft/lbs: A=1.25 turns; Tube Stickage rating E=easy/M=moderate/D=difficult /F=failure Comments: Tested @ 125% of Rating

3/4-Inch

	Torque Values				
New I.D.	@ 1.25 Turns	Seat Collar	If = N, record	@ 1.25 Turns (Ft-lbs)	t-lbs)
HAM-LET	Ft-lbs	(Y/N)	Ft-lbs	W/O Stop Collar *	Accept
1	101.9	Y		66.14	Pass
2	110.8	Y		54.70	Pass
3	92.6	Y		41.04	Pass
4	101.7	N	101.7	46.51	Pass
5	94.3	N	94.3	49.68	Pass
6	115.0	Y		66.59	Pass
7	89.9	Y		52.12	Pass
8	90.2	Y		56.10	Pass
9	107.8	Y		73.82	Pass
10	103.5	Y		52.63	Pass
11	105.9	Y		50.86	Pass
12	99.0	Y		83.42	Pass
13	99.0	Y		82.68	Pass
14	98.1	Y		82.24	Pass
15	109.2	Y		51.82	Pass
16	102.0	Y		53.15	Pass
17	128.5	Y		50.79	Pass
18	112.8	Y		59.94	Pass
19	131.0	N	131.0	55.81	Pass
20	115.5	Y		57.28	Pass
21	81.3	Y		51.60	Pass
22	121.4	Y		50.12	Pass
23	106.1	Y		62.82	Pass
24	103.6	Y		58.76	Pass
25	101.5	Y		56.69	Pass
26	120.7	Y		64.96	Pass
27	100.5	Y		50.94	Pass
28	92.8	Y		51.60	Pass
29	92.3	Y		53.59	Pass
30	94.6	Y		53.96	Pass
31	114.3	Y		48.13	Pass
32	124.4	Y		51.45	Pass
33	121.2	N	121.2	56.69	Pass

TEST NO. 5.1 (Continued)

Data Collection Requirements for Pneumatic Proof Tests

GE Torque Information in ft/lbs: A=1.25 turns; Tube Stickage rating E=easy/M=moderate/D=difficult /F=failure Comments: Tested @ 125% of Rating

3/4-Inch (Continued)

	Torque Values				
New I.D.	@ 1.25 Turns	Seat Collar	If = N, record	@ 1.25 Turns (Ft-lbs)	Aggent
HAM-LET	Ft-lbs	(Y/N)	Ft-lbs	W/O Stop Collar *	Accept
34	114.4	Y		56.18	Pass
35	135.9	Y		54.11	Pass
36	100.0	Y		58.61	Pass
37	101.5	Y		74.71	Pass
38	102.3	Y		65.18	Pass
39	82.7	Y		56.32	Pass
40	101.9	Y		57.80	Pass
41	103.2	Y		60.98	Pass
42	102.8	Y		63.71	Pass
43	115.4	Y		57.36	Pass
44	109.1	Y		52.56	Pass
45	94.9	Y		56.77	Pass
46	115.3	Y		63.63	Pass
47	113.6	Y		NA	Pass
48	112.3	Y		NA	Pass
49	119.2	Y		NA	Pass
50	121.4	Y		NA	Pass
51	145.2	Y		NA	Pass
52	123.8	Y		NA	Pass
53	101.2	Y		NA	Pass
54	123.0	Y		NA	Pass
55	97.9	Y		NA	Pass
56	98.3	Y		NA	Pass
57	115.2	N	115.2	NA	Pass
58	117.1	Y		NA	Pass
59	106.4	Y		NA	Pass
60	96.0	N	96.0	NA	Pass

TEST NO. 5.1

Data Collection Requirements for Pneumatic Proof Tests

GE Torque Information in ft/lbs: A=1.25 turns; Tube Stickage rating E=easy/M=moderate/D=difficult /F=failure Comments: Tested @ 125% of Rating

1-Inch

	Torque Values				
New I.D.	@ 1.25 Turns	Seat Collar	If = N, record	@ 1.25 Turns (Ft-lbs)	Accept
HAM-LET	Ft-lbs	(Y/N)	Ft-lbs	W/O Stop Collar *	Ассері
1	133.7	N	133.7	109.55	Pass
2	90.4	N	90.4	108.15	Pass
3	162.7	Y		101.35	Pass
4	158.7	N	158.7	107.04	Pass
5	179.7	Y		95.30	Pass
6	161.7	Y		96.04	Pass
7	170.5	N	170.5	96.19	Pass
8	147.1	Y		107.04	Pass
9	171.1	Y		99.66	Pass
10	180.7	N	180.7	102.02	Pass
11	176.2	N	176.2	95.67	Pass
12	187.4	Y		96.78	Pass
13	157.0	N	157.0	98.33	Pass
14	165.9	N	165.9	95.15	Pass
15	172.2	N	172.2	100.84	Pass
16	148.7	N	148.7	98.40	Pass
17	188.5	N	188.5	97.44	Pass
18	184.9	N	184.9	99.80	Pass
19	172.4	N	172.4	97.59	Pass
20	150.2	N	150.2	96.63	Pass
21	134.2	N	134.2	96.19	Pass
22	97.5	N	97.5	96.19	Pass
23	138.4	N	138.4	99.07	Pass
24	145.0	Y		95.82	Pass
25	152.5	N	152.5	95.30	Pass
26	198.0	Y		96.04	Pass
27	158.2	N	158.2	101.13	Pass
28	119.8	Y		100.10	Pass
29	136.2	Y		97.52	Pass
30	163.1	N	163.1	95.74	Pass
31	134.1	N	134.1	102.83	Pass
32	171.5	N	171.5	102.46	Pass
33	196.6	Y		98.70	Pass

TEST NO. 5.1 (Continued)

Data Collection Requirements for Pneumatic Proof Tests

GE Torque Information in ft/lbs: A=1.25 turns; Tube Stickage rating E=easy/M=moderate/D=difficult /F=failure Comments: Tested @ 125% of Rating

1-Inch (Continued)

	Torque Values						
New I.D. HAM-LET	@ 1.25 Turns Ft-lbs	Seat Collar (Y/N)	If = N, record Ft-lbs	@ 1.25 Turns (Ft-lbs) W/O Stop Collar *	Accept		
34	132.4	Y		96.26	Pass		
35	120.0	N	120.0	97.15	Pass		
36	155.6	N	155.6	98.11	Pass		
37	136.2	Y		102.54	Pass		
38	126.1	Y		97.15	Pass		
39	163.9	N	163.9	97.81	Pass		
40	137.1	N	137.1	96.56	Pass		
41	122.5	Y		95.23	Pass		
42	134.8	Y		100.54	Pass		
43	146.0	Y		99.51	Pass		
44	127.6	N	127.6	98.62	Pass		
45	156.8	N	156.8	95.08	Pass		
46	156.2	Y		NA	Pass		
47	187.5	N	187.5	NA	Pass		
48	188.1	Y		NA	Pass		
49	139.8	Y		NA	Pass		
50	143.9	N	143.9	NA	Pass		
51	158.1	Y		NA	Pass		
52	136.1	N	136.1	NA	Pass		
53	170.0	Y		NA	Pass		
54	98.9	Y		NA	Pass		
55	144.9	N	144.9	NA	Pass		
56	136.4	Y		NA	Pass		
57	143.4	N	143.4	NA	Pass		
58	168.8	Y		NA	Pass		
59	148.6	N	148.6	NA	Pass		
60	146.1	Y		NA	Pass		

Page No. C-1 Test Report No. 50666-01

ATTACHMENT C HYDROSTATIC TEST DATA

Page No. C-2 Test Report No. 50666-01

TEST NO. 5.2

Data Collection Requirements for Hydrostatic Tests GE Torque Information (Remake Information)

A rating of "M" would describe a disassembly requiring moderate flexing of the tube by hand back and forth in the same plane for removal. A rating of "D" would describe an instance where tools such as pliers, channel locks, vise grips, hammer, vise, etc. would be required for disassembling the connection. A rating of "F" would describe a connection that simply cannot be disassembled even with the aid of tools.

Comments: Tested @ 125% of Rating

1/4-Inch

New I.D. HAM-LET	1st Remake Torque	Tube Stickage	Accept
1	11.42	M	Pass
2	10.97	M	Pass
3	11.54	M	Pass
4	11.98	M	Pass
5	11.81	M	Pass
6	12.92	M	Pass
7	12.46	M	Pass
8	12.41	M	Pass
9	10.97	M	Pass
10	12.46	M	Pass
11	11.35	M	Pass
12	11.18	M	Pass
13	10.48	M	Pass
14	13.01	M	Pass
15	10.42	M	Pass
16	10.55	M	Pass
17	10.45	M	Pass
18	12.68	M	Pass
19	13.13	M	Pass
20	12.77	M	Pass
21	12.25	M	Pass
22	12.17	M	Pass
23	10.52	M	Pass
24	12.37	M	Pass
25	14.46	M	Pass
26	12.77	M	Pass
27	12.96	M	Pass
28	12.17	M	Pass
29	10.36	M	Pass
30	11.03	M	Pass
31	12.80	M	Pass
32	12.66	M	Pass
33	14.34	M	Pass

Page No. C-3 Test Report No. 50666-01

TEST NO. 5.2 (Continued)

Data Collection Requirements for Hydrostatic Tests

<u>1/4-Inch</u> (Continued)

New I.D. HAM-LET	1st Remake Torque	Tube Stickage	Accept
34	12.19	M	Pass
35	12.13	M	Pass
36	15.09	M	Pass
37	14.10	M	Pass
38	12.66	M	Pass
39	12.35	M	Pass
40	8.85	M	Pass
41	12.40	M	Pass
42	11.99	M	Pass
43	12.83	M	Pass
44	11.89	M	Pass
45	12.20	M	Pass
46	13.25	M	Pass
47	11.29	M	Pass
48	11.83	M	Pass
49	11.44	M	Pass
50	13.04	M	Pass
51	13.53	M	Pass
52	9.52	M	Pass
53	13.08	M	Pass
54	11.78	M	Pass
55	13.70	M	Pass
56	11.78	M	Pass
57	12.01	M	Pass
58	9.96	M	Pass
59	12.49	M	Pass
60	9.49	M	Pass

Page No. C-4 Test Report No. 50666-01

TEST NO. 5.2 (Continued)

Data Collection Requirements for Hydrostatic Tests

1/2-Inch

New I.D.			
HAM-LET	1st Remake	Tube Stickage	Accept
1	36.26	M	Pass
2	37.13	M	Pass
3	26.05	M	Pass
4	29.25	M	Pass
5	36.47	M	Pass
6	33.47	M	Pass
7	30.73	M	Pass
8	34.33	M	Pass
9	34.45	M	Pass
10	32.50	M	Pass
11	39.73	M	Pass
12	38.52	M	Pass
13	33.05	M	Pass
14	34.36	M	Pass
15	31.74	M	Pass
16	37.34	M	Pass
17	25.60	M	Pass
18	36.60	M	Pass
19	26.45	M	Pass
20	36.05	M	Pass
21	32.25	M	Pass
22	30.94	M	Pass
23	30.75	M	Pass
24	34.09	M	Pass
25	29.66	M	Pass
26	33.16	M	Pass
27	28.58	M	Pass
28	30.60	M	Pass
29	29.72	M	Pass
30	39.48	M	Pass
31	29.21	M	Pass
32	32.10	M	Pass
33	34.46	M	Pass
34	30.25	M	Pass
35	35.28	M	Pass

Page No. C-5 Test Report No. 50666-01

TEST NO. 5.2 (Continued)

Data Collection Requirements for Hydrostatic Tests

1/2-Inch (Continued)

New I.D.			
HAM-LET	1st Remake	Tube Stickage	Accept
36	39.24	M	Pass
37	32.75	M	Pass
38	38.44	M	Pass
39	33.08	M	Pass
40	25.46	M	Pass
41	28.29	M	Pass
42	32.71	M	Pass
43	33.29	M	Pass
44	32.49	M	Pass
45	40.46	M	Pass
46	38.50	M	Pass
47	37.08	M	Pass
48	38.32	M	Pass
49	40.70	M	Pass
50	30.81	M	Pass
51	32.11	M	Pass
52	33.23	M	Pass
53	38.41	M	Pass
54	29.66	M	Pass
55	33.76	M	Pass
56	39.45	M	Pass
57	28.29	M	Pass
58	38.32	M	Pass
59	31.56	M	Pass
60	24.21	M	Pass

Page No. C-6 Test Report No. 50666-01

TEST NO. 5.2 (Continued)

Data Collection Requirements for Hydrostatic Tests

3/4-Inch

New I.D.			
HAM-LET	1st Remake	Tube Stickage	Accept
1	77.5	M	Pass
2	86.2	M	Pass
3	69.4	M	Pass
4	82.8	M	Pass
5	75.1	M	Pass
6	101.8	M	Pass
7	65.4	M	Pass
8	80.7	M	Pass
9	91.2	M	Pass
10	82.0	M	Pass
11	69.6	M	Pass
12	82.9	M	Pass
13	59.2	M	Pass
14	69.7	M	Pass
15	75.2	M	Pass
16	79.2	M	Pass
17	61.9	M	Pass
18	53.2	M	Pass
19	63.9	M	Pass
20	64.3	M	Pass
21	79.3	M	Pass
22	71.2	M	Pass
23	73.1	M	Pass
24	85.3	M	Pass
25	74.2	M	Pass
26	74.6	M	Pass
27	58.1	M	Pass
28	65.4	M	Pass
29	70.3	M	Pass
30	64.5	M	Pass
31	64.4	M	Pass
32	73.5	M	Pass
33	75.3	M	Pass
34	73.9	M	Pass
35	55.1	M	Pass
36	67.3	M	Pass
37	63.1	M	Pass

Page No. C-7 Test Report No. 50666-01

TEST NO. 5.2 (Continued)

Data Collection Requirements for Hydrostatic Tests

3/4-Inch (Continued)

New I.D. HAM-LET	1st Remake	Tube Stickage	Accept
38	63.3	M	Pass
39	61.7	M	Pass
40	67.7	M	Pass
41	65.2	M	Pass
42	68.5	M	Pass
43	66.8	M	Pass
44	55.8	M	Pass
45	69.8	M	Pass
46	72.6	M	Pass
47	64.6	M	Pass
48	84.4	M	Pass
49	71.0	M	Pass
50	65.8	M	Pass
51	67.1	M	Pass
52	50.9	M	Pass
53	62.4	M	Pass
54	60.3	M	Pass
55	66.3	M	Pass
56	71.2	M	Pass
57	65.2	M	Pass
58	80.6	M	Pass
59	75.5	M	Pass
60	57.6	M	Pass

Page No. C-8 Test Report No. 50666-01

TEST NO. 5.2 (Continued)

Data Collection Requirements for Hydrostatic Tests

1-Inch

New I.D.			
HAM-LET	1st Remake	Tube Stickage	Accept
1	87.0	M	Pass
2	74.1	M	Pass
3	119.4	M	Pass
4	81.5	M	Pass
5	106.0	M	Pass
6	86.5	M	Pass
7	68.5	M	Pass
8	97.4	M	Pass
9	115.2	M	Pass
10	83.5	M	Pass
11	91.8	M	Pass
12	108.4	M	Pass
13	108.6	M	Pass
14	97.9	M	Pass
15	119.4	M	Pass
16	92.4	M	Pass
17	77.4	M	Pass
18	89.6	M	Pass
19	108.3	M	Pass
20	111.9	M	Pass
21	95.5	M	Pass
22	52.4	M	Pass
23	83.7	M	Pass
24	110.2	M	Pass
25	85.7	M	Pass
26	103.1	M	Pass
27	87.1	M	Pass
28	64.4	M	Pass
29	78.8	M	Pass
30	91.4	M	Pass
31	83.1	M	Pass
32	94.7	M	Pass
33	114.7	M	Pass
34	80.9	M	Pass
35	56.5	M	Pass
36	60.5	M	Pass
37	63.4	M	Pass

Page No. C-9 Test Report No. 50666-01

TEST NO. 5.2 (Continued)

Data Collection Requirements for Hydrostatic Tests

<u>1-Inch</u> (Continued)

New I.D.			
HAM-LET	1st Remake	Tube Stickage	Accept
38	73.9	M	Pass
39	88.4	M	Pass
40	54.1	M	Pass
41	60.4	M	Pass
42	105.0	M	Pass
43	87.8	M	Pass
44	59.7	M	Pass
45	92.6	M	Pass
46	87.7	M	Pass
47	76.2	M	Pass
48	90.7	M	Pass
49	88.0	M	Pass
50	78.1	M	Pass
51	78.5	M	Pass
52	70.1	M	Pass
53	97.2	M	Pass
54	63.7	M	Pass
55	80.1	M	Pass
56	91.1	M	Pass
57	86.7	M	Pass
58	81.0	M	Pass
59	85.2	M	Pass
60	80.2	M	Pass

Page No. D-1 Test Report No. 50666-01

ATTACHMENT D IMPULSE TEST DATA

Page No. D-2 Test Report No. 50666-01

TEST NO. 5.3

Data Collection Requirements for Impulse Tests (Repeated Assembly Test Information)

<u>1/4-Inch</u>

New I.D. HAM-LET	0%	25%	50%	75%	100%
1	Pass	Pass	Pass	Pass	Pass
2	Pass	Pass	Pass	Pass	Pass
3	Pass	Pass	Pass	Pass	Pass
4	Pass	Pass	Pass	Pass	Pass
5	Pass	Pass	Pass	Pass	Pass
6	Pass	Pass	Pass	Pass	Pass

<u>1/2-Inch</u>

New I.D. HAM-LET	0%	25%	50%	75%	100%
1	Pass	Pass	Pass	Pass	Pass
2	Pass	Pass	Pass	Pass	Pass
3	Pass	Pass	Pass	Pass	Pass
4	Pass	Pass	Pass	Pass	Pass
5	Pass	Pass	Pass	Pass	Pass
6	Pass	Pass	Pass	Pass	Pass

3/4-Inch

New I.D. HAM-LET	0%	25%	50%	75%	100%
1	Pass	Pass	Pass	Pass	Pass
2	Pass	Pass	Pass	Pass	Pass
3	Pass	Pass	Pass	Pass	Pass
4	Pass	Pass	Pass	Pass	Pass
5	Pass	Pass	Pass	Pass	Pass
6	Pass	Pass	Pass	Pass	Pass

1-Inch

New I.D. HAM-LET	0%	25%	50%	75%	100%
1	Pass	Pass	Pass	Pass	Pass
2	Pass	Pass	Pass	Pass	Pass
3	Pass	Pass	Pass	Pass	Pass
4	Pass	Pass	Pass	Pass	Pass
5	Pass	Pass	Pass	Pass	Pass
6	Pass	Pass	Pass	Pass	Pass

ATTACHMENT E HYDROSTATIC BURST TEST DATA

TEST NO. 5.4

Data Collection Requirements for Hydrostatic Bursts

Comments: Tested @ 4X Rating

Record Test Information Pressure

New I.D. HAM-LET	1/4-Inch	1/2-Inch	3/4-Inch	1.0-Inch	Comments
25	Pass	Fail*	Pass	Fail**	
26	Pass	Fail*	Pass	Fail**	
27	Pass	Fail*	Pass	Fail**	
28	Pass	Fail*	Pass	Fail**	
29	Pass	Fail*	Pass	Fail**	
30	Pass	Fail*	Pass	Fail**	
31	Pass	Fail*	Pass	Fail**	
32	Pass	Fail*	Pass	Fail**	

^{*} Tubing burst at less than 20,400 psig. See summary result.

Thermal Cycling and Elevated Temperature Soak

A

^{**} Tubing burst at less than 14,400 psig. See summary result.

ATTACHMENT F

TENSILE TEST DATA

TEST NO. 5.5

Data Collection Requirements for Tensile Tests

HAM-LET	1/4-Inch	1/2-Inch	3/4-Inch	1-Inch	Comments
19	Pass	Pass	Pass	Pass	
20	Pass	Pass	Fail*	Pass	
21	Pass	Pass	Pass	Pass	
22	Pass	Pass	Pass	Pass	
23	Pass	Pass	Pass	Pass	
24	Pass	Pass	Pass	Pass	

^{*}Specimen slipped at 5632, Requirement was 5917. See summary result.

A

Page No. G-1 Test Report No. 50666-01

ATTACHMENT G ROTARY FLEX TEST DATA

Page No. G-2 Test Report No. 50666-01

TEST NO. 5.7

Data Collection Requirements for Rotary Flex Tests

Comments: Tested @ 133% of Rating

<u>1/4-Inch</u>

HAM-LET	Accept	Pressure	Cycles	Hydro
13	Pass	500	1M	Pass
14	Pass	500	1M	Pass
15	Pass	500	1M	Pass
16	Pass	500	1M	Pass
17	Pass	500	1M	Pass
18	Pass	500	1M	Pass

1/2-Inch

HAM-LET	Accept	Pressure	Cycles	Hydro
13	Pass	500	1M	Pass
14	Pass	500	1M	Pass
15	Pass	500	1M	Pass
16	Pass	500	1M	Pass
17	Pass	500	1M	Pass
18	*	500	TBD	*

^{*}Tubing failure based on stress level. Stress level adjusted to 75% of the 35% UT for subseqent samples tested.

<u>3/4-Inch</u>

HAM-LET	Accept	Pressure	Cycles	Hydro
13	Pass	500	1M	Pass
14	Pass	500	1M	Pass
15	Pass	500	1M	Pass
16	Pass	500	1M	Pass
17	Pass	500	1M	Pass
18	Pass	500	1M	Pass

1-Inch

HAM-LET	Accept	Pressure	Cycles	Hydro
13	Pass	500	1M	Pass
14	Pass	500	1M	Pass
15	*	500	1M	*
16	Pass	500	1M	Pass
17	Pass	500	1M	Pass
18	*	500	1M	*

^{*}Tubing failure based on stress level. Stress level adjusted to 75% of the 35% UT for subseqent samples tested.

Page No. H-1 Test Report No. 50666-01

ATTACHMENT H FLEX FATIGUE TEST DATA

Page No. H-2 Test Report No. 50666-01

TEST NO. 5.8

Data Collection Requirements for Flexure Fatigue Tests

Repeated Assembly Test Information

1/4-Inch

HAM-LET	0%	25%	50%	75%	100%	Pressure	Cycles
7	Pass	Pass	Pass	Pass	Pass	7500	30K
8	Pass	Pass	Pass	Pass	Pass	7500	30K
9	Pass	Pass	Pass	Pass	Pass	7500	30K
10	Pass	Pass	Pass	Pass	Pass	7500	30K
11	Pass	Pass	Pass	Pass	Pass	7500	30K
12	Pass	Pass	Pass	Pass	Pass	7500	30K

<u>1/2-Inch</u>

HAM-LET	0%	25%	50%	75%	100%	Pressure	Cycles
7	Pass	Pass	Pass	Pass	Pass	5100	30K
8	Pass	Pass	Pass	Pass	Pass	5100	30K
9	Pass	Pass	Pass	Pass	Pass	5100	30K
10	Pass	Pass	Pass	Pass	Pass	5100	30K
11	Pass	Pass	Pass	Pass	Pass	5100	30K
12	Pass	Pass	Pass	Pass	Pass	5100	30K

3/4-Inch

HAM-LET	0%	25%	50%	75%	100%	Pressure	Cycles
7	Pass	Pass	Pass	Pass	Pass	4900	30K
8	Pass	Pass	Pass	Pass	Pass	4900	30K
9	Pass	Pass	Pass	Pass	Pass	4900	30K
10	Pass	Pass	Pass	Pass	Pass	4900	30K
11	Pass	Pass	Pass	Pass	Pass	4900	30K
12	Pass	Pass	Pass	Pass	Pass	4900	30K

1-Inch

HAM-LET	0%	25%	50%	75%	100%	Pressure	Cycles
7	Pass	Pass	Pass	Pass	Pass	3600	30K
8	Pass	Pass	Pass	Pass	Pass	3600	30K
9	Pass	Pass	Pass	Pass	Pass	3600	30K
10	Pass	Pass	Pass	Pass	Pass	3600	30K
11	Pass	Pass	Pass	Pass	Pass	3600	30K
12	Pass	Pass	Pass	Pass	Pass	3600	30K

Page No. I-1 Test Report No. 50666-01

ATTACHMENT I HIGH TEMPERATURE THERMAL CYCLE DATA

Page No. I-2 Test Report No. 50666-01

TEST NO. 5.9

Data Collection Requirements for Thermal Cycling Tests <u>High Temperature</u>

	1/4-]	Inch	1/2-]	nch	3/4-1	Inch	1-In	ıch
HAM-LET	5.9 High	5.2						
25	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
26	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
27	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
28	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
29	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
30	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
31	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
32	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
33	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
34	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
35	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
36	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
37	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
38	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
39	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
40	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
41	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
42	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
43	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
44	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
45	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
46	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
47	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
48	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
49	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
50	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
51	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
52	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
53	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass

Page No. J-1 Test Report No. 50666-01

ATTACHMENT J LOW TEMPERATURE THERMAL CYCLE DATA

Page No. J-2 Test Report No. 50666-01

TEST NO. 5.9

Data Collection Requirements for Thermal Cycling Tests

Low Temperature

HAM-LET	1/4-I	nch	1/2-1	Inch	3/4-1	inch	1-In	ch
HAMI-LE I	5.9 Low	5.2	5.9 Low	5.2	5.9 Low	5.2	5.9 Low	5.2
25	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
26	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
27	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
28	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
29	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
30	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
31	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
32	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
33	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
34	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
35	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
36	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
37	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
38	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
39	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
40	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
41	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
42	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
43	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
44	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
45	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
46	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
47	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
48	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
49	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
50	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
51	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
52	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
53	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass

Page No. K-1 Test Report No. 50666-01

ATTACHMENT K ELEVATED SOAK TEST DATA

Page No. K-2 Test Report No. 50666-01

 $\underline{\text{TEST NO. 5.10}}$ Data Collection Requirements for Elevated Soak Tests

HAM-LET	1/4-	Inch	1/2-	Inch	3/4-	Inch	1-I	nch
HAWI-LEI	5.10	5.2	5.10	5.2	5.10	5.2	5.10	5.2
25	Pass							
26	Pass							
27	Pass							
28	Pass							
29	Pass							
30	Pass							
31	Pass							
32	Pass							
33	Pass							
34	Pass							
35	Pass							
36	Pass							
37	Pass							
38	Pass							
39	Pass							
40	Pass							
41	Pass							
42	Pass							
43	Pass							
44	Pass							
45	Pass							
46	Pass							
47	Pass							

Page No. L-1 Test Report No. 50666-01

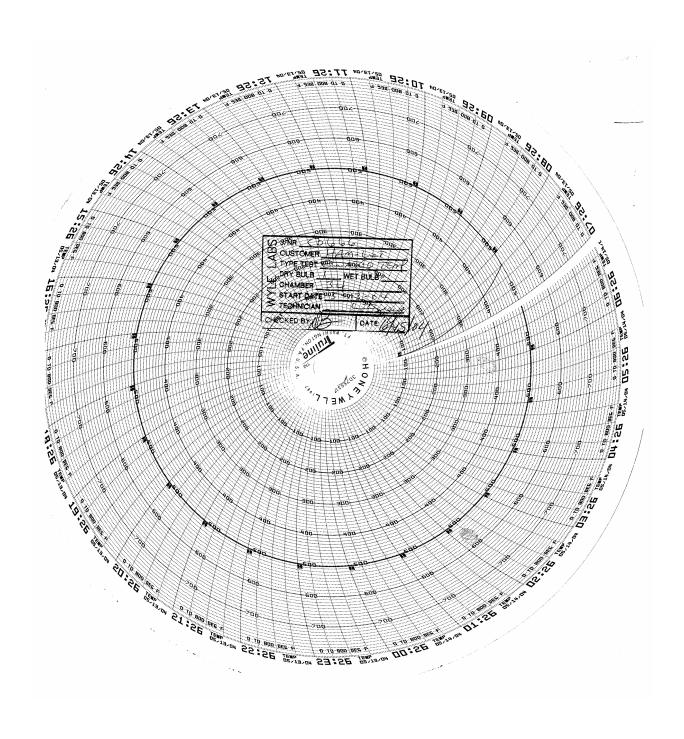
ATTACHMENT L VIBRATION TEST DATA

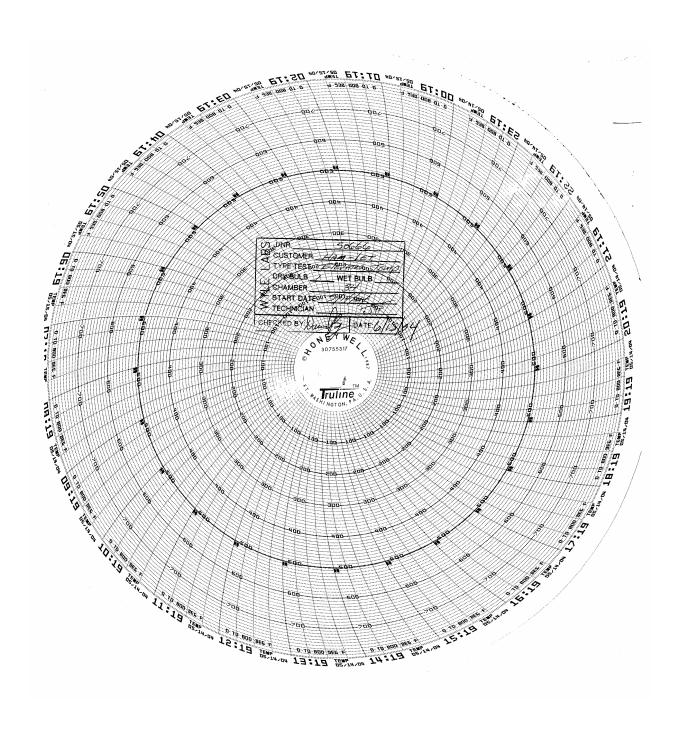
Page No. L-2 Test Report No. 50666-01

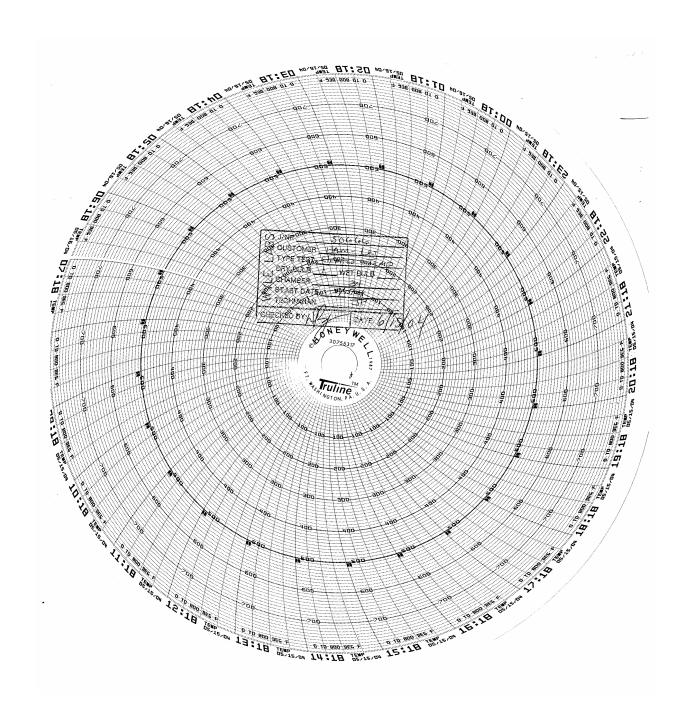
TEST NO. 5.11

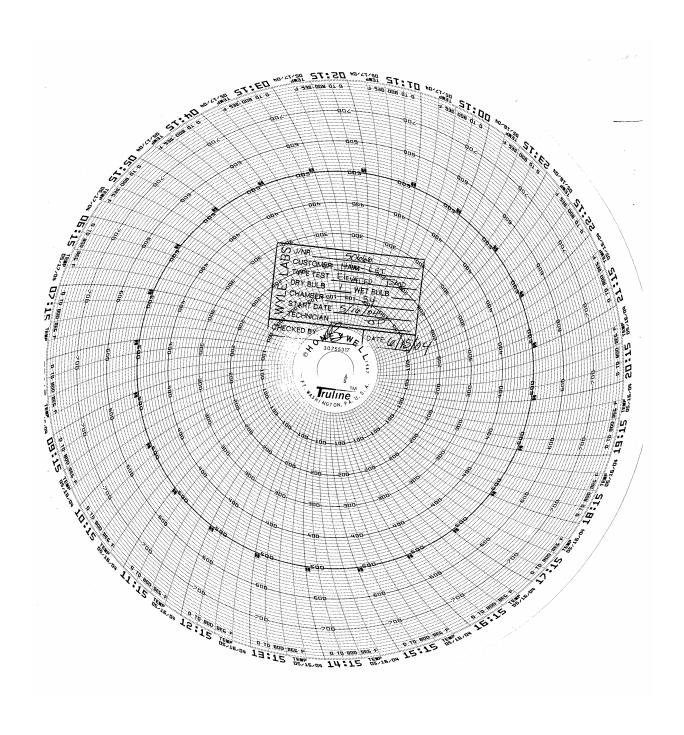
Data Collection Requirements for Vibration Tests

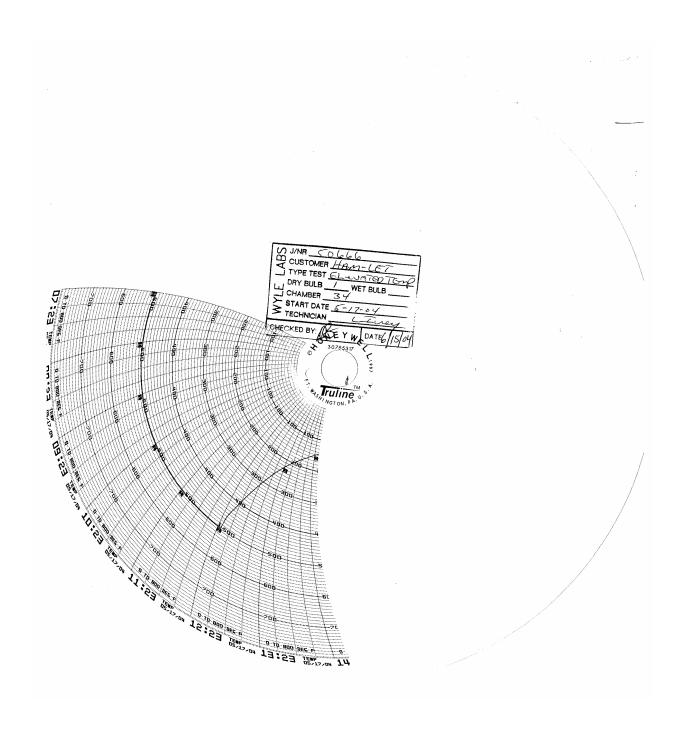
Variable Frequency


HAM-LET	1/4-Inch		1/2-	1/2-Inch		3/4-Inch		1-Inch	
	5.11	5.2	5.11	5.2	5.11	5.2	5.11	5.2	
33	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
34	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
35	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
36	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
37	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
38	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	


Endurance


HAM-LET	1/4-]	Inch	1/2-	Inch	3/4-	Inch	1-Inch			
HAWI-LET	5.11	5.2	5.11	5.2	5.11	5.2	5.11	5.2		
33	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass		
34	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass		
35	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass		
36	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass		
37	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass		
38	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass		

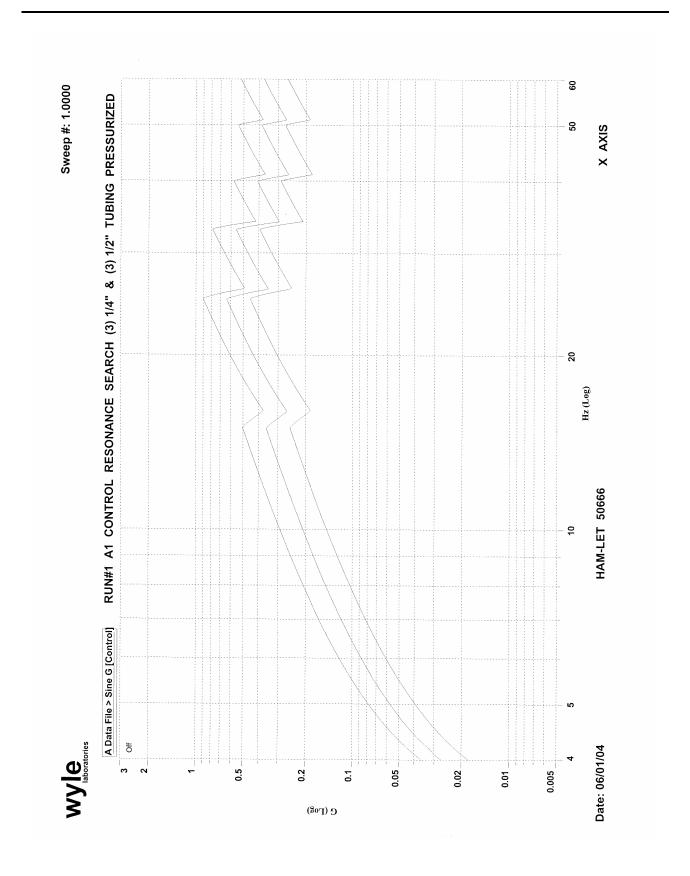

Page No. M-1 Test Report No. 50666-01

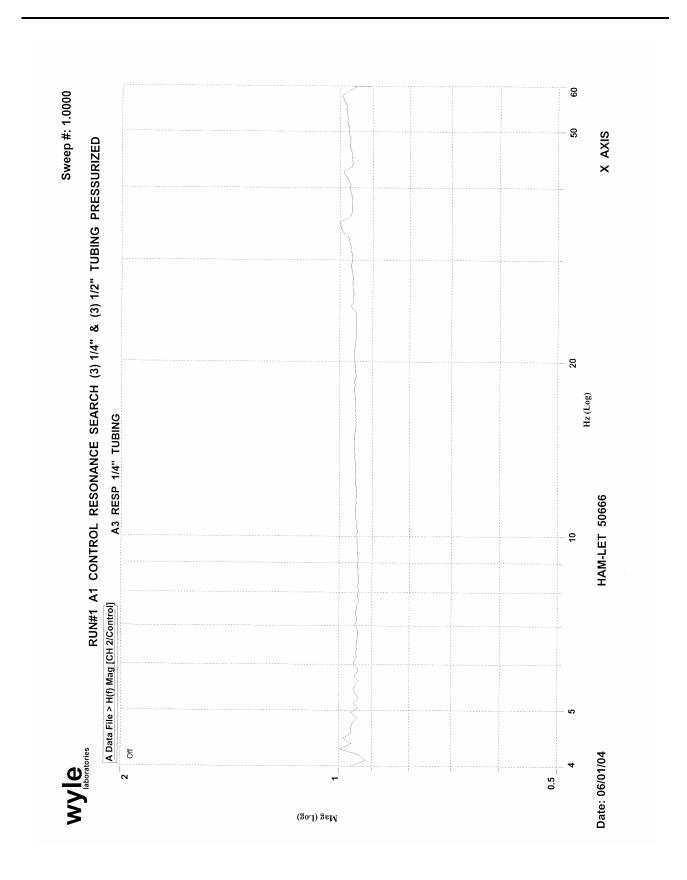

ATTACHMENT M ELEVATED TEMPERATURE CIRCULAR CHARTS

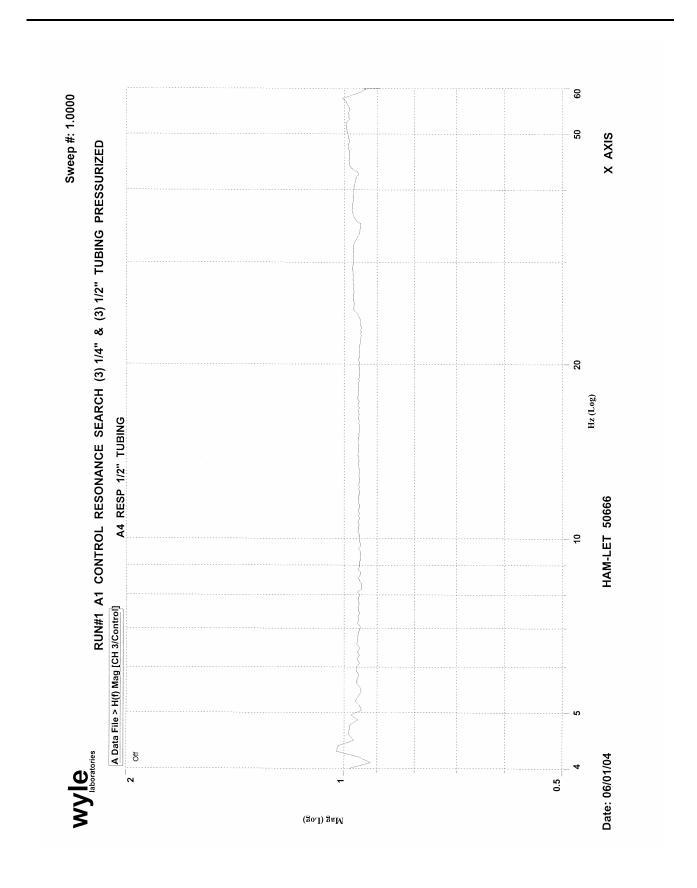
Page No. N-1 Test Report No. 50666-01

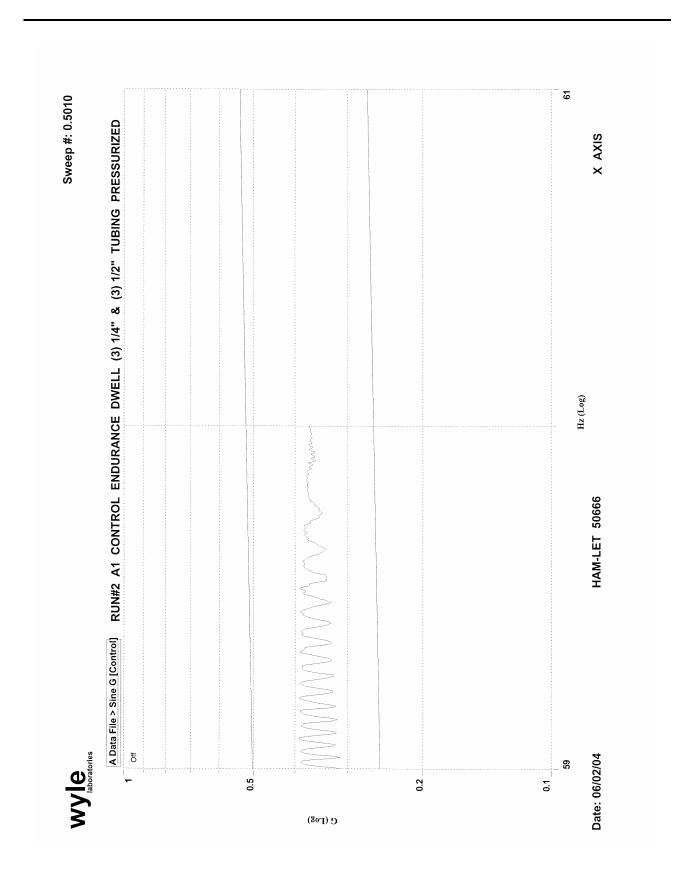
ATTACHMENT N VIBRATION TEST DATA SHEETS AND PLOTS

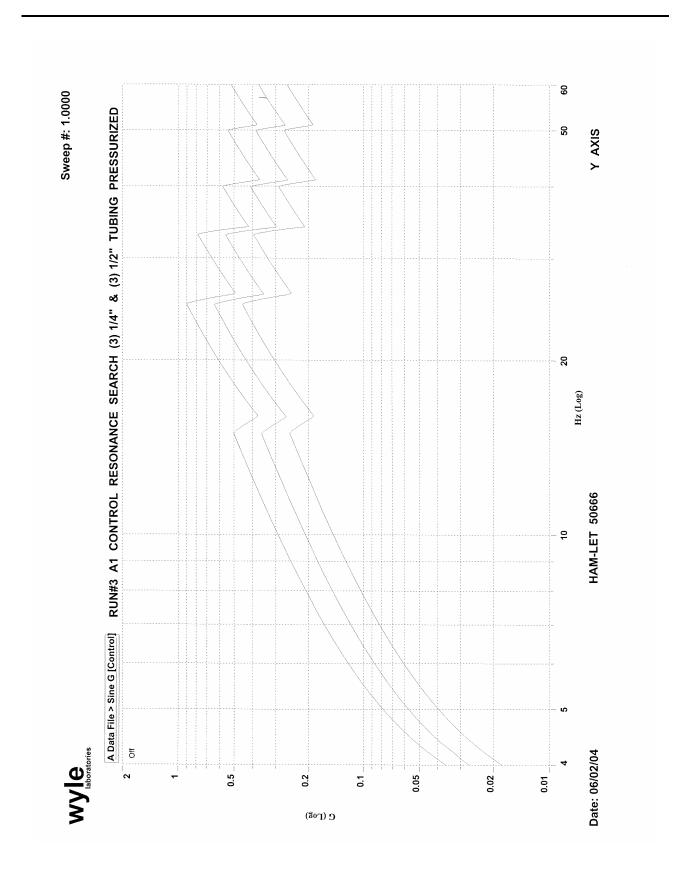
Page No. N-2 Test Report No. 50666-01


Job No. 50666-0 J Report No. 50666-0 J Date 6/15/09 NAME g Page _/__ of _. Am 5 Appendix A REV Specimen TUDE ASSENDIES 14" 12" 4" \times Specimen Temp. 200 TEST REQUIREMENT Yes 100 COMMENTS 200 10 Photo 1 0) (3) @/ 0) 7 Run#2 2un#1 **VIBRATION TEST DATA SHEET** Test Time (min.) 285 Collstoy Approved X Kelles TOTAL Accel. (grms) Slope (dB/Oct) PSD (g²/Hz) RANDOM GE 362A2195 Freq. (cps) Accel. (±g) Procedure .002 Disp. ("da) 200 1031 Method ,031 Ö 34-40 05-14 51-60 26.33 52-01 4-15 Freq. (cps) 0 4-15 ₽ 8 0 AMB 4=0 AMA Temp (°F) HAM-LET 50666 Axis 1345 Time 0752 8101 Yes Customer Test Title 40/11/9 10/2/04 h0/2/9 WH-1028A Date GSI

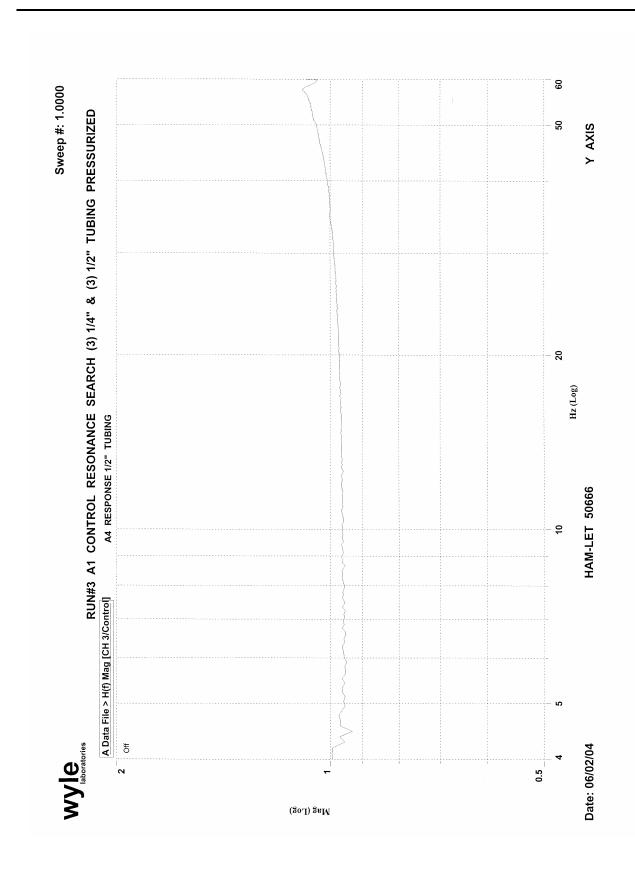

Page No. N-3 Test Report No. 50666-01

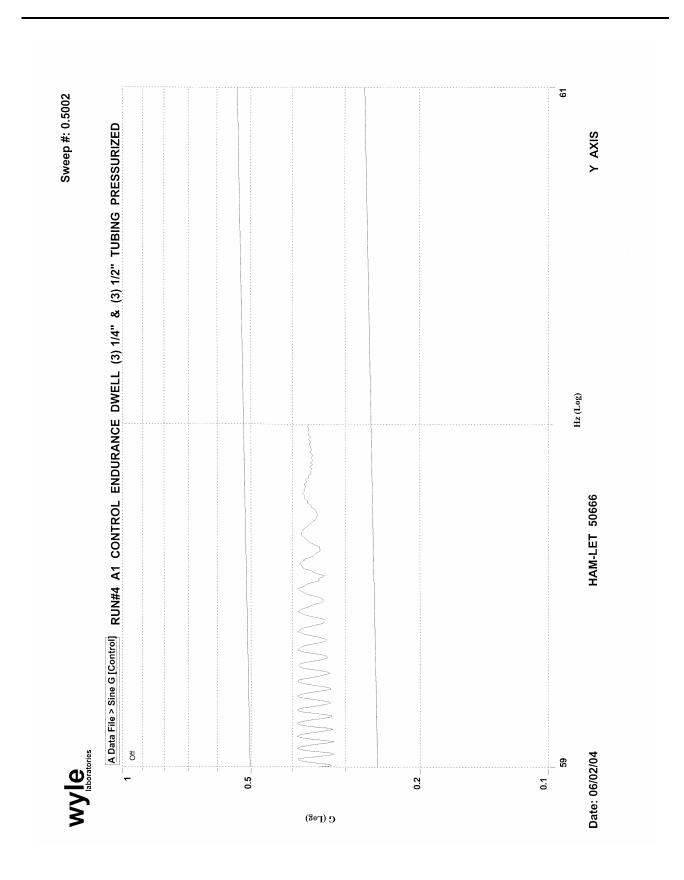

	The state of the s	NAME	May	American de la companya della companya della companya de la companya de la companya della compan				And						Mill			Job No. 50666 Report No. 50666-01 Date 6/15/09 Page 2 of 3						
VIBRATION TEST DATA SHEET	I D No.	COMMENTS	TEST REQUIREMENT	Run#3 CONT.			RON#4 14" 12"		200#S	14" Q7500 ps,	1/2" @ 5100 PSP				Rute 14" 12"		7 this 2	34" @ 4,900 psp	I" C 3,600 PS,	TOWN TO THE TOWN THE			263 4 c/15/04
		AL Test el. Time is) (min.)			285		021						,	285	120							285	
		TOTAL e Accel. ct) (grms)																					Approved
		Slope (dB/Oct)																				-	
		PSD (g²/Hz)																					6/15/04
		Freq. (cps)															-						4
IBR/		Accel. (±g)																					M.
>		SINUSOIDAL Disp. ("da)		500.	200'		200.	-	, 03/	20.	10.	.005	:003	200.	200'		150,	201	10	200,	.003	2001	
	i	Freq. (cps)		as-1h	51-60		00		4-15	10-25	26-33	34-40	41-50	51-60	00)		51-h	16-25	26-33	34-40	95-14	51-60	Signed
		Temp (°F)					AMB		AMB														S
		Axis					}		7						7	-	2						
		Time					1510		1732						0649		1212						
		Date					6/2/04		40/2/0)						40/5/0		6/3/04			_			VH-1028

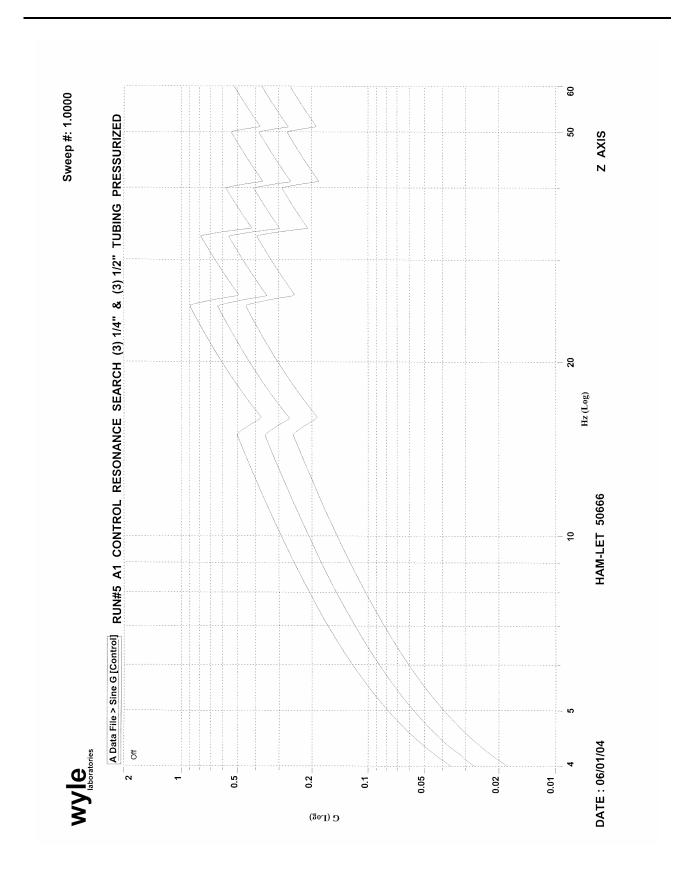

Page No. N-4 Test Report No. 50666-01

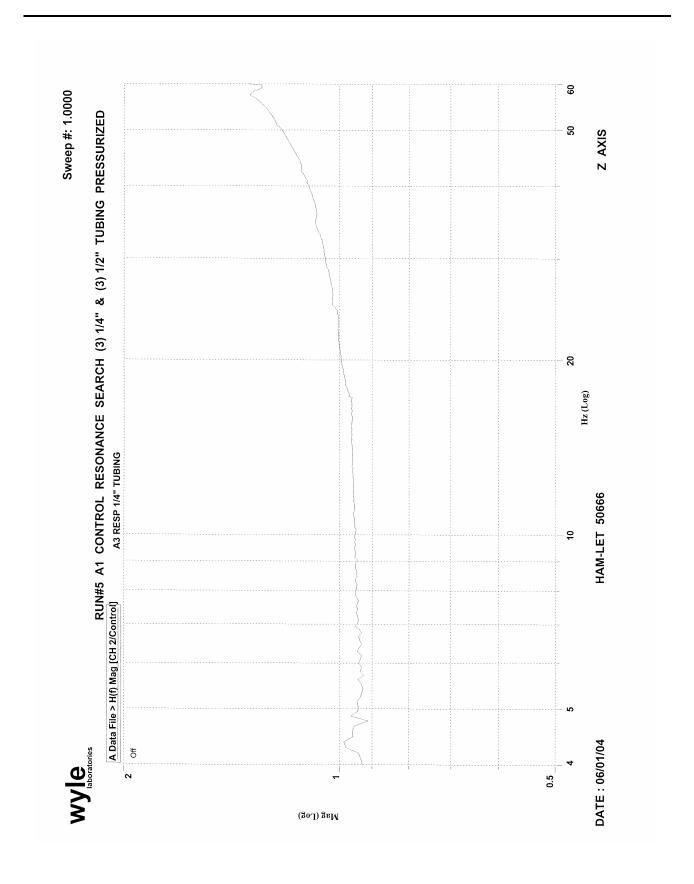

		NAME		July	Amt						-	March	Jun				Job No. <u>50666</u> Report No. <u>50666-01</u> Date <u>6115/04</u> Page <u>3</u> of <u>3</u>					
ET		COMMENTS	TEST REQUIREMENT	Run#8 34, I"	Run#9	3/4" @ 4,900 ps?	I" @ 3600 ps9					Run#10 3/4" I"	Eun#11	34" (0 4900 ps,0	I" @ 3600 Ps,º			Transport of the Control of the Cont		RUN#12 34" I"		L CBy 6/15/04
SHE	-	Time (min.)		120						285		120						395		120		66.54
٩T٨	TOTAL	Accel. (grms)													-							Approved
T D/		Slope (dB/Oct)								-												
TES		PSD (g ² /Hz)																				40/21/04
VIBRATION TEST DATA SHEET		Freq. (cps)					-															
BRA		Accel. (±g)																				A
>	SINUSOIDAL	Disp. ("da)		209.	150.	20.	10.	3001	5000	200'		700'	150:	201	0	500.	500'	200:		200'		
	SINC	Freq. (cps)		09	4-15	16.25	36-33	34-40	41.50	51-60		09	4-15	16-25	26-33	0h-hE	05-1h	51-60		09		Signed
		Temp (°F)		4mB	4mB			-				4716	4 mB							AmB		တ _္ !
		Axis		2	<u>}</u>							>	\times							×		
		Time		holl	0758							1253	1515							0752		
		Date		10/2/04	4/4/04							40/4/04	holf los	-	-					4 0/2/0	-	VH-1028

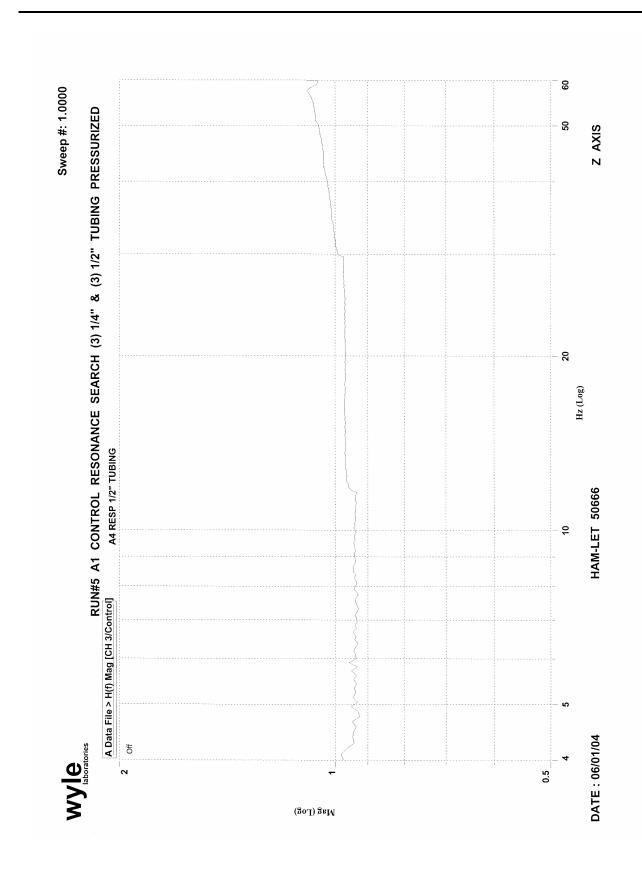


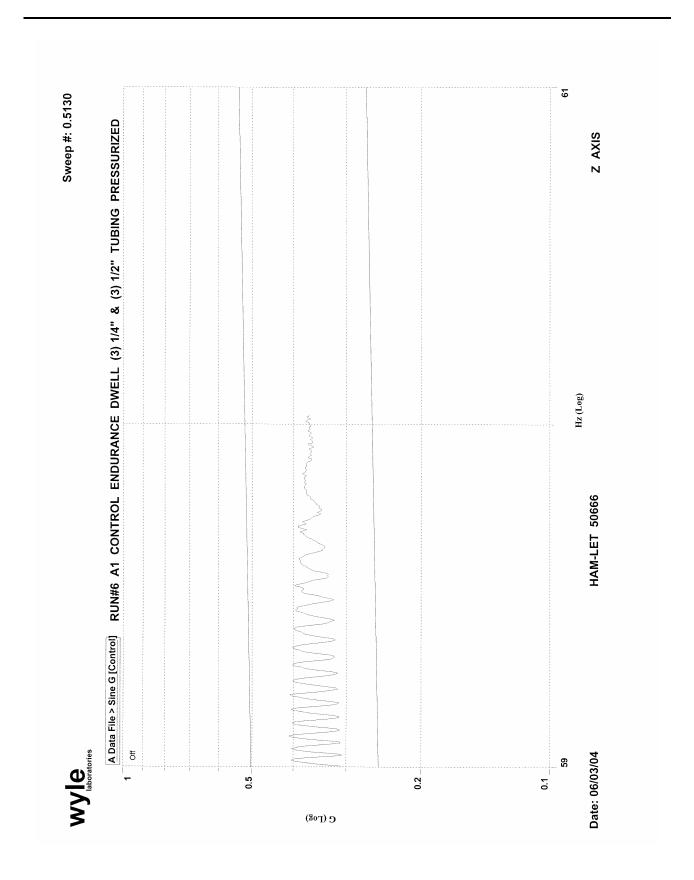


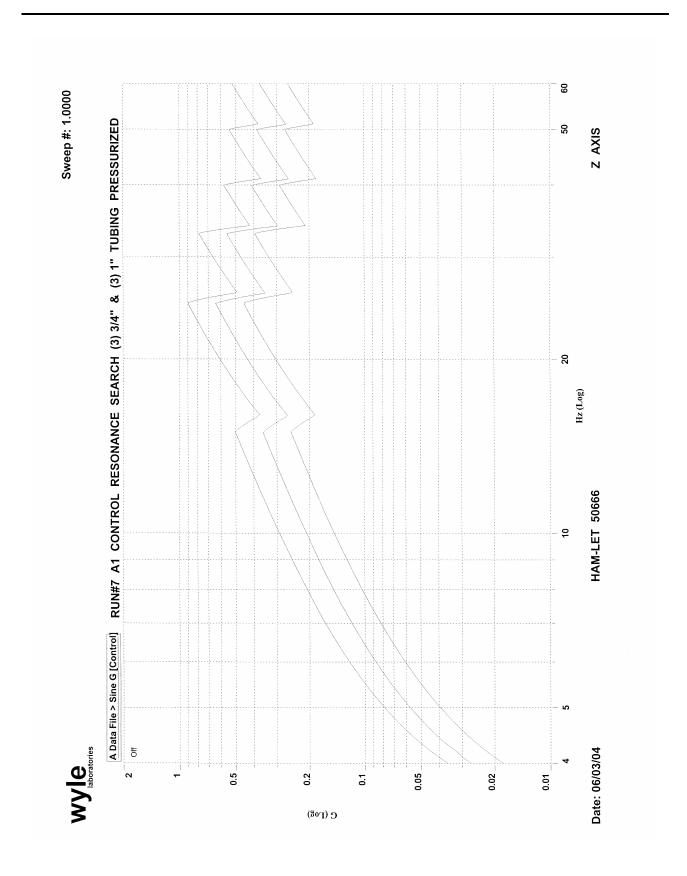


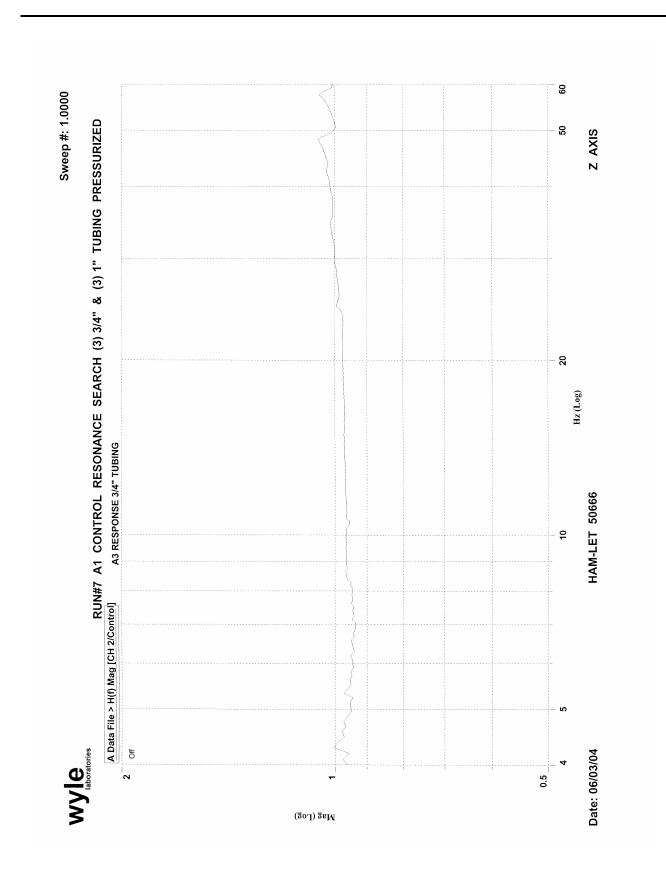


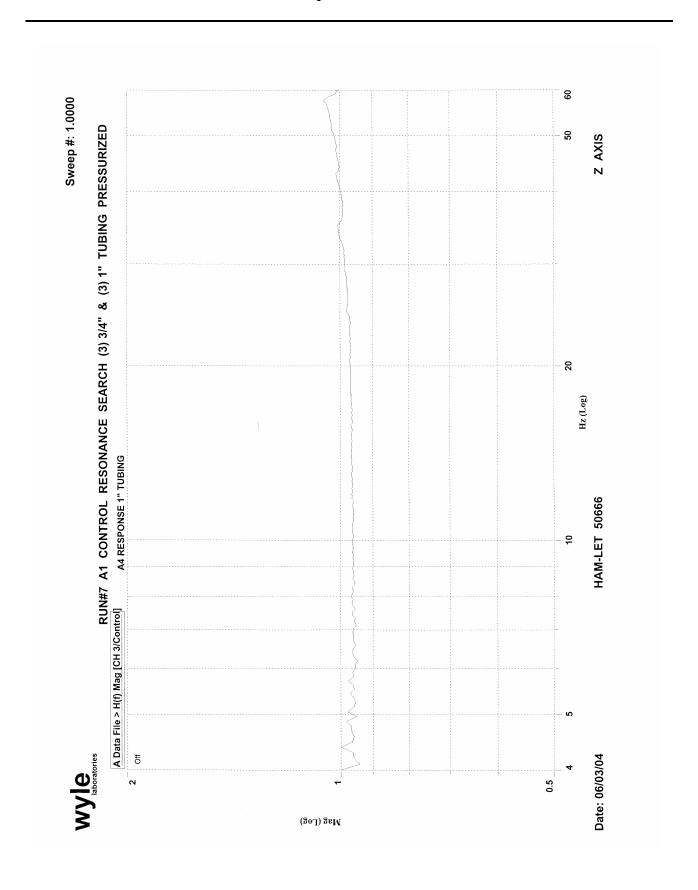


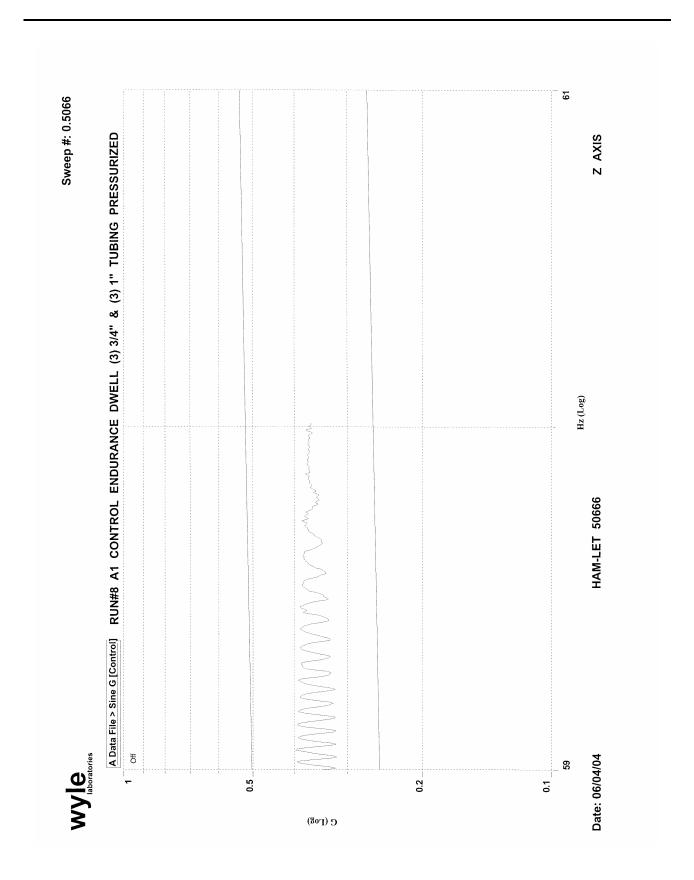


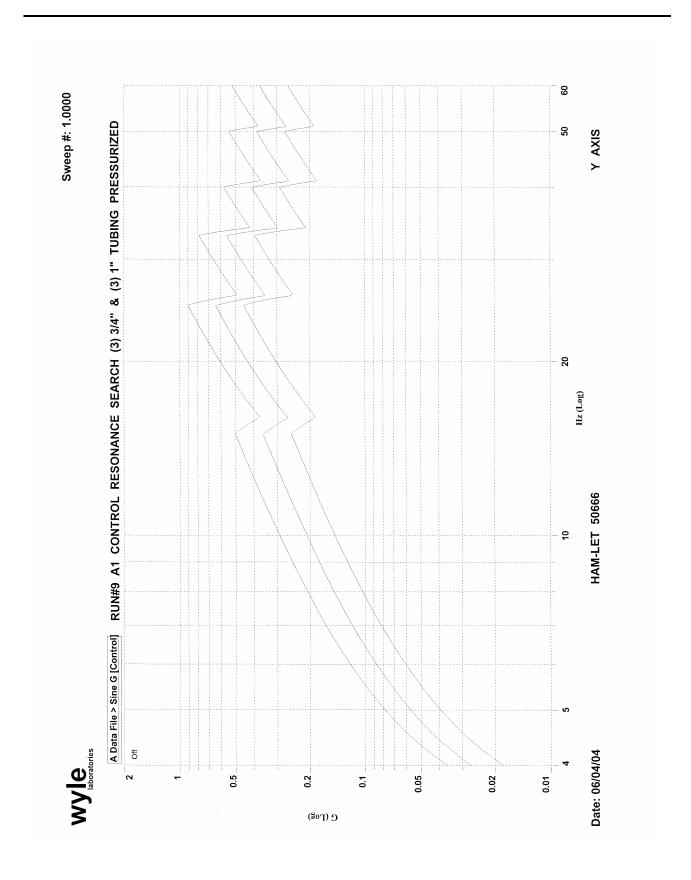


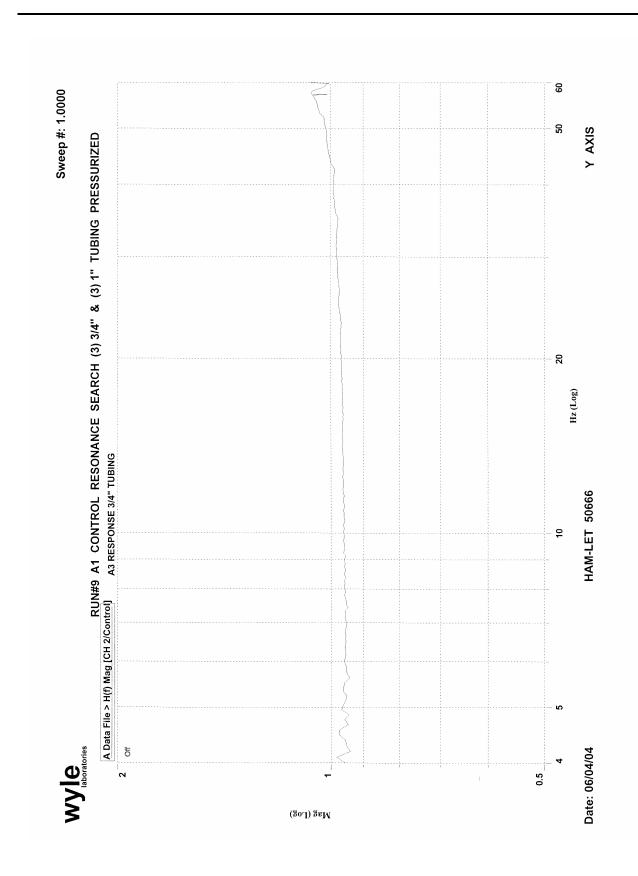


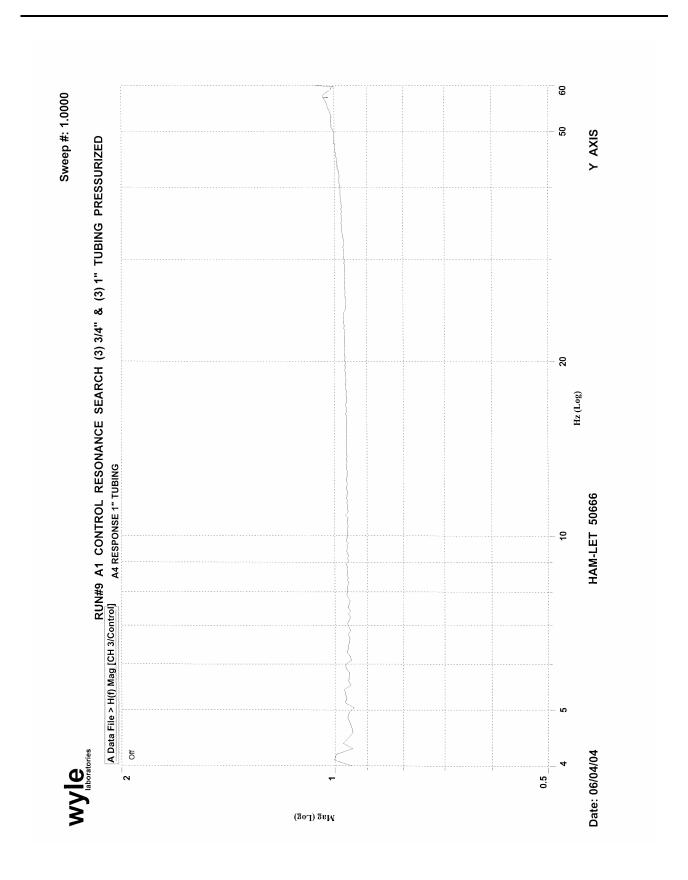


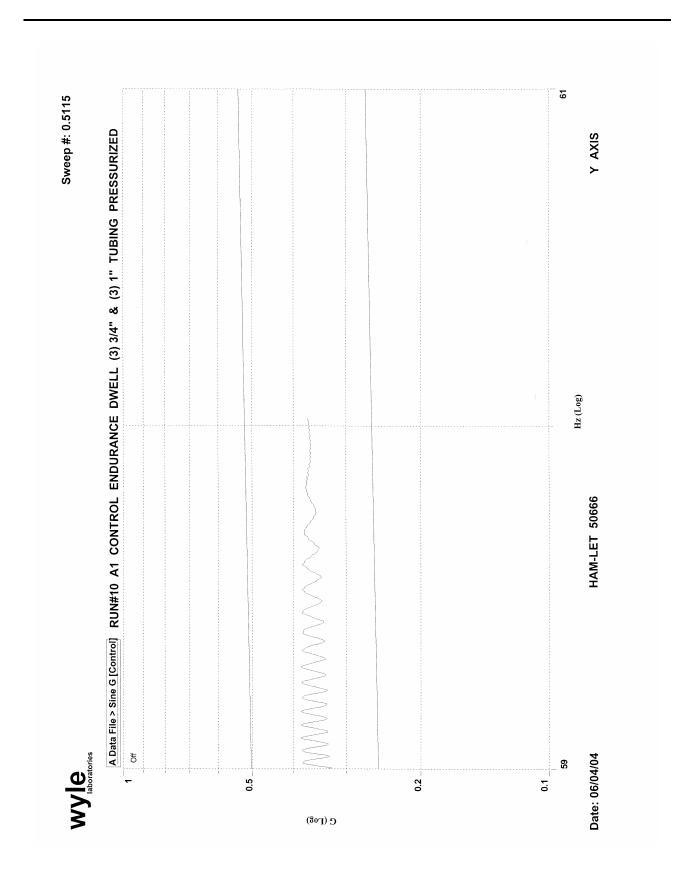


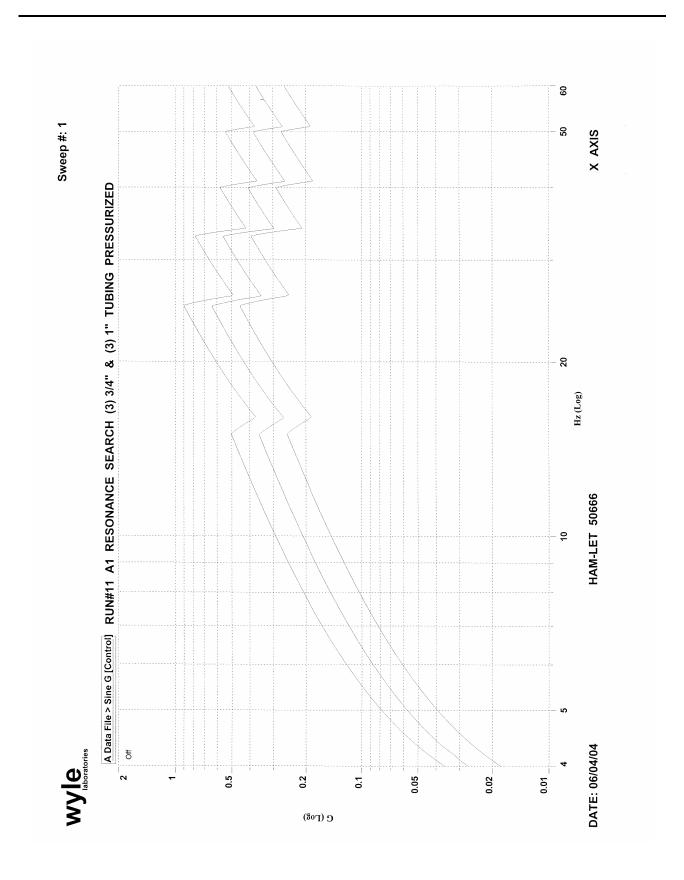


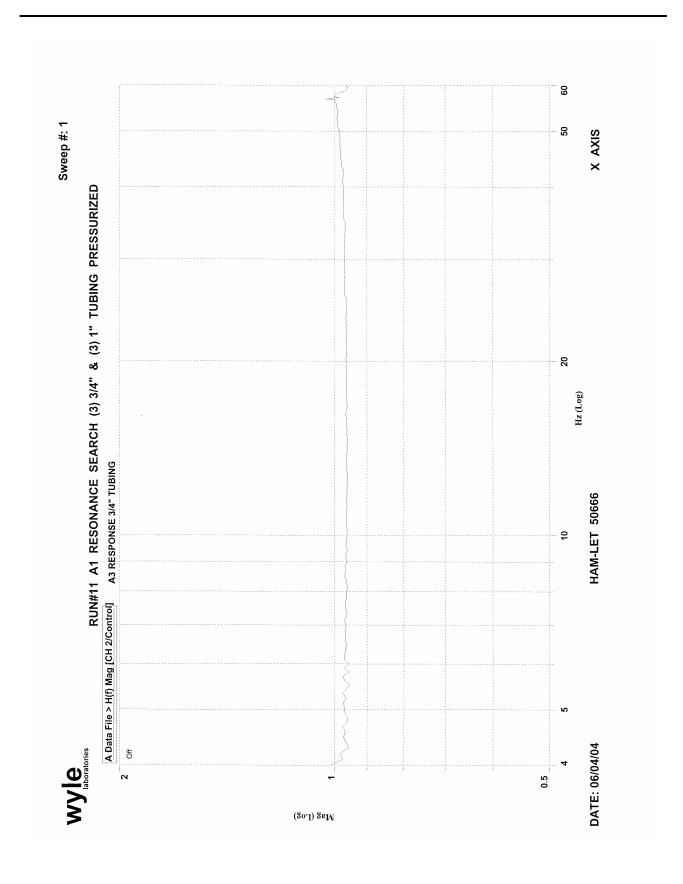


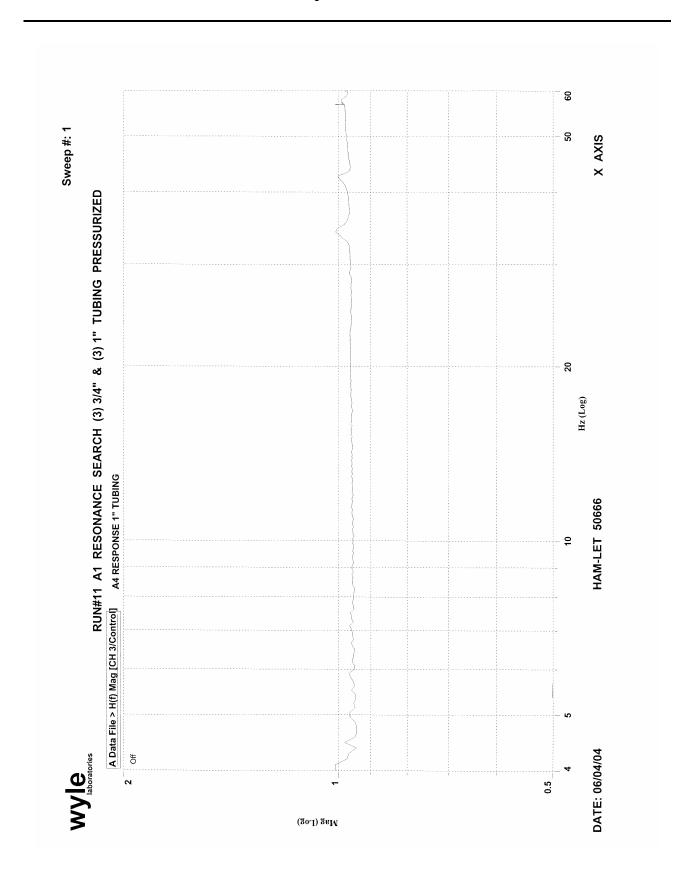


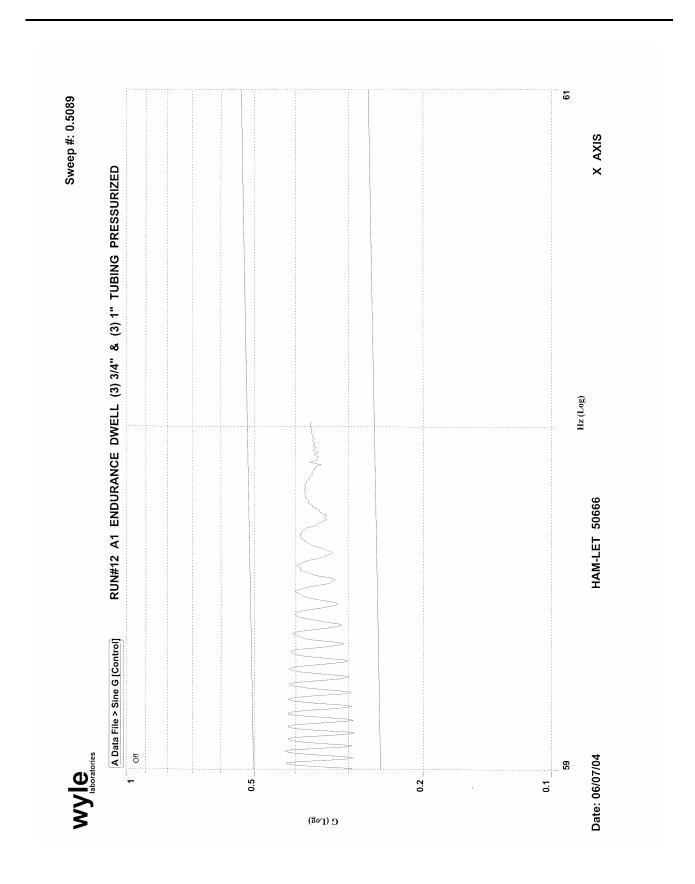












Page No. O-1 Test Report No. 50666-01

ATTACHMENT O TENSILE TEST DATA SHEET

www.Test Metal.com 213 Lyon Lane Birmingham, AL 35211 205.940.9480 866.RUN.TEST

REPORT OF ANALYSIS

Huntsville, AL 35807

Wyle Labs
Attention: David Bailey
7800 Highway 20 West

Test Date: Report Date: Lab Number: P. O. Number: 05/21/2004 05/25/2004 41532 HSV0031509

Submitted Samples:

(24) Tube/Fitting Assemblies

1" +
1" †
7758
7,780
7,770
7,801
7,763
7,760
7,760

Notes:

- Calculated Tensile Load per Section 7.5.4 based on actual cross section of tubes as determined by measurement of Tube OD and wall thickness.
- Upon attainment of the Calculated Tensile Load, load application ceased and was held for a few seconds prior to removal of load.
- 3, Observations during testing:
 - *Base on Load Rate Change, this specimen appeared to begin slipping at approximately 5,400 lbf. The load was continually applied until the dropping load reached 5,000 lbf. Slippage was measured at 0.09".

†With the exception of the 3/4" Tube, Specimen #20, all 3/4" and 1" tubes slipped approximately 1/32" during the test

Test Method(s): GE Spe

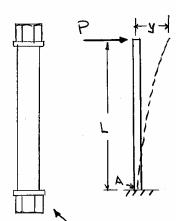
GE Specification 362A2915, Appendix A, Section 7.5

Respectfully Submitted,

Materials Technology, Inc.

Quality Assurance Representative

Tests and analysis performed in accordance with procedures derived from methods described and approved by the ASTM and other accepted industry practices. This report shall not be reproduced, except in full, without the prior written approval of Materials Technology, Inc.


Testing efforts were in accordance with MTI QA Program, Rev. 2 – February 15, 2002

Page 1 of 1

Page No. P-1 Test Report No. 50666-01

ATTACHMENT P TYPICAL STRAIN CALCULATION DATA SHEETS

tories (Eastern Operations)

P ~ applied force, lbs y ~ deflection, in. L = free length, 9.0 in.

- 1) Assume end) is fixed no displacement or rotation.
 2) Force Papplied at upper end.
 3) Maximum stress will be on the outer surface of the tube nearest the fixed end (max. bending moment).

$$y = \frac{PL^3}{3ET} = \frac{ML^2}{3ET}$$

$$\sigma_b = \text{max. bending stress} = \frac{Mc}{I} = \frac{3Eyc}{L^2}$$

Ub = 35% of ultimate strength (UTS) Nominal UTS for 304 is \$5,000 psi MINIMUM UTS for 304 15 75,000 poi

$$y = \frac{85000(9)^{2}(2)}{3(29,000,000)(00)} = \frac{0.158276}{00}$$

J. Roth / 12/1/03 Checked By: Prepared By:_

1

wyle laboratories (Eastern Operations)

7.8.8 Axial stress in tubes: S= Pd2
D2-d2

Tube (D)	wall	<u>d</u>	Pipsi	_8,80(
0.25	0.049	0.152	7500	4398.4
0.50	0.065	0.370	5100	6173.2
0.75	0.095	0.560	4900	6173.7
1.0	0.095	0.810	3600	6869.2

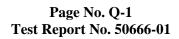
7.8.9 Average bending stress (mid-wall) = 38000-S $T_b = \frac{My}{I} = 38000-S$

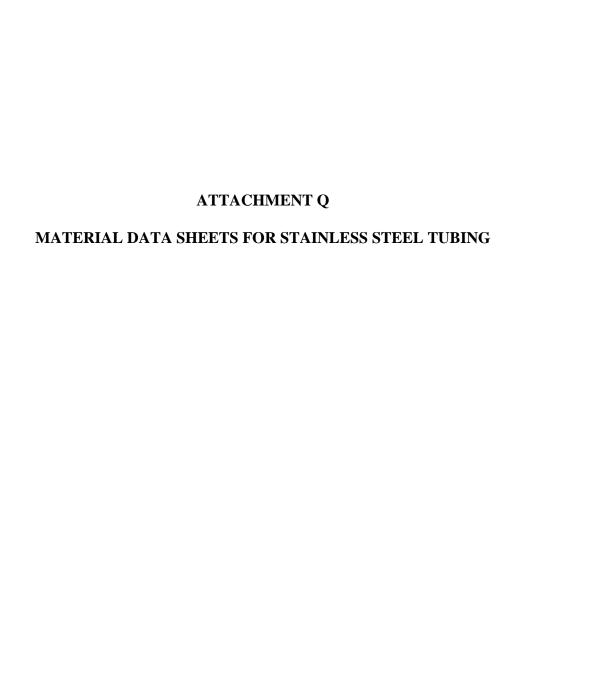
Tube (D)	y= 1 (D+d)	M, in-16s,	Smax .	
0.75	0.1005	55.349	46191	1593
0,50	0.2175	314.315	42756	1474
0.75	0.3275	1040.215	42616	1470
1.0	0.4525	1923.423	41268	1423

* Smax = total outer surface (00) longitudinal stress = MD + 8

E = measured strain = Smax/E = Smax/29x106psi 3 Min/in

Prepared By:	JRoth /12/11/03	Checked By	11272 3
. ,	Date	140	Date


wyle laboratories (Eastern Operations)


S

For P= 500 psig, all sizes

Tube(D)	S, p51	M, 14-16s.	Swax	_ ∈	
0.25	293.2	62.111	47192	1627	
0.50	605.2	369.303	43587	1503	
0.75	630,0	1221.408	43420	1497	
1.0	953.9	2288.820	41889	1444	

Prepared By: JRothy 12/11/03 Checked By: Date Date

Page No. Q-2 Test Report No. 50666-01

3301710

3301710

SALEM TUBE	TUB	-	INC.			ā	CERTIFICATION NUMBER	ION NOT		14336		_	Teleph	Telephone: (724)646-4301) 646-430	_
A SUBSIDIARY OF	AXX		TUBACKA			8	CERTIFICATION DATE	ION DAT		10/27/2003	33		Fax:	12 ((724)646-4311	_
51.000	CUSTOMER	E E			OUR D	OUR ORDER NUMBER;	1	3,701710					٥	SHIP TO		
Maryon : Kenstone Butler	ά ά				YOUR	YOUR P.O. NUMBER:		80-5322			≵ ω	MARMON/KEYSTONE EAST BUTLER	EXSTONE CER			
FINISE	80	GRADE	TYPE	DESCR	DESCRIPTION				CUT I	CUT LENGTHS			SPECIFICATION	CATION		
BRIGHT ANNEAL T304/T304L	T304/T	304L	S	X 001,000.	1 1	. 095'' AW					ASME-S ASTM-A	ASME-SA213-01 ASTM-A213-01/A269-02 EAW	A269-02	EAW		
HEAT NO.	1,0	ujų 4	d.	8.8	181	4N2	\$CE	• F.B	\$T.	Ç.	Ş	, Co	3	H.	2	8 X 2
Ladle	0.0210	1.8000	0.0270	0.0050	0.4260	1	9.1900 18.0600	0.0000	0.0000	0.2600	0.3500	0.1290	0.000	0.0000	0.0000	0.0595
Check	0,0260	1.8400	0.0280	0,0040	0,4400	9.1400	18.2200	0.0000	0.0000	0.2500	0.3600	0.1330	0.000	0.000	0,000,0	0.0775
	1.07		CISIX	9 =	E S	TENSILE	*	RICHGATION (35 23)	<u> </u>	HARDNIE SB	GRA	GRAIN SIZE		Ra	CORROSION	I GN
A54784	2		AVG	Ç Ç		AVO		AVC		AVG 5	₹	ASTM #	8	ន	(ASTH PRACTICE)	cricel
	2		49655	5		91432		29		85						
HEAT NO.	28	\$Mn	4P	8-8	481	FN4)CE	\$ FO	P.LT	g₩.	ກິດ	တ္ခန္	14.	M.	24	6 N 2
Ladle	0.0160	1.4300	0.0280	0.0040	0.3000	0.3000 10.1500	18.2600	0,0000	0,0000	0.2200	0.2500	0.0000	0.000	0.000	0.000	0.0470
Check	0.0140	1,6600	0.0260	0,0060		0,3100 10.1000	18.3400	0.000	0.000.0	0,2200	0.2500	0.0000	0.000	0.000.0	0.000	0.0423
	LOI		XIELD (PBI)	9 9	76	TENBILE (PBI)	*	ELONGATION		HARDNE 98		GRAIN SIZE		X.	CORROSION	NOI
A61916			AVG	g		AVG		AVG	-	AVG	ď	ABTM #	8	TD	(ASTH PRACTICE)	CTICE)
	8		47320	0		87 520		64		80						
HEAT NO.	Ş	9.Ym	46	18	l Sí	INI	∮ Cr) Fa	LTI	₽Wo	η _Ω α	8 Co	141	M.	^ *	BN 2
Ladle	0910.0	1.6600	0.0290	0.0010	0.3800	9,1600	18.2100	0.0000	0.0000	0.2400	0.2900	0.1300	0.0000	0.0000	0.0000	0.0735
Chack	0.0140	1.6700	0.0270	0.0010	00.3700	9.1400	18.2000	0.0000	0.0000	0.2400	0.2900	0.1400	0.000	0.0000	0.0000	0.0746
A64920	LOTS		MAIY (184) AVG	YIELD (PSI)	318	TENSILE (PSI)	1	ELONGATION (in 2")		HAARDINESS (RB)		GRAIN SIZE ASTM B	8	# K	CORROSION	ION
	-		48863	, n		88703		85		85						

Page No. Q-3 Test Report No. 50666-01

To: HAM-LET USA INC 03/01/2004 From: MARMON/KEYSTONE M/K OR: 80-004883 INIT. : CAM C P.O.: VERBAL/DON Nov 18, 2003 GWW 9:58:20 Page 1 of 1 MATERIAL CERTIFICATE No. 200341278 Sandvik Materials Technology P.O. Box 1220, Scranton, PA 18501 PH. (570) 585-7500 Plant Location: 982 Griffin Pond Road, Clarks Summit, PA 18411 Ship To: Sold To: MARMON/KEYSTONE CORP. (80) BUTL MARMON/KEYSTONE CORP. (80) BUTLER PA EAST BUTLER PA Customer Order No: 8000113 Sandvik Order No: 15135/3 Certification Date: 20031118 Work Order/Lot: 308479 ASTM A213-01a, ASTM A269-02, ASME SA-213, ASME Section II 2001 Edition; 2003 Addenda Cold Finished BRIGHT ANNEALED Seamless Tube Size: .250" X .049" Heat: 459849 Type MT 304/MT 304L/TP304/TP304L ANALYSIS % Si Mn Heat .016 .40 1.65 Prod .013 .40 1 2 P S Cr Νı .009 18.19 .007 18.13 .028 1.65 10.10 1.66 .028 10.15 Al Fe Cu Pb Heat 68.9 .22 Prod 68.93 .23 .003 Mechanical Tests:

 Mechanical Tests:

 Yield Strength
 Tensile
 Elongation

 0.2%
 1.0%
 Strength
 in %

 psi
 MPa
 psi
 MPa
 E2"
 E10"
 E4d
 E5d

 44000
 303.4
 N/A
 87000
 600.0
 58
 N/A
 N/A
 N/A

 Reduction Of Area N/A Hardness Test Results: 74HRB, 73HRB Flare Test per ASTM A450, No. samples: 2 Result: Acceptable Flattening Test per ASTM A450: Acceptable Tensile Test sample width (1=Full-Size 2=1/2" Strip): 1 Country Of Origin: Canada All material subjected to a final solution annealing heat treatment with material at a temperature of 1900 deg.F. minimum followed by rapid quenching. The material has not come in contact with Mercury or Mercury containing compounds. No welding has been performed on this material. Material has been eddy current tested in accordance with ASTM A450, ASTM A1016 and is acceptable. Material has been manufactured/supplied in accordance with Sandvik Materials Technology Quality Manual-Standard Products Revision 6 dated October 9, 2003. Quality system has been approved to ISO 9001:2000. Certificate produced in accordance with EN 10204 (DIN 50049) 3.1.B. This is to certify that the contents of this certificate are correct and accurate as contained in Sandvik's records, and that all above test results and operations performed are in compliance with the requirements of the purchase order Q.C. REVIEWED and the specification(s) listed above.

Kurt Revak, Quality Specialist
10 (MKINST R7) (10) (GWW)

Must help Authorized Representative

Page No. Q-4 Test Report No. 50666-01

Apr 22 04 04:12p HAM-LET OHIO APR 22 '04 06:31 FR MK - BUTLER MTR

440-248-7555 724 283 4582 TU 914482487555

F. W.)/ W4

p.4

GREENVILLE TUBE P.O. Box 30 Greenville, PA 16125 REPORT OF TESTS

Phone (724)-588-6300 Fax (724)-588-1492

Citsione	er Mar	mon Keys	tone C	orporati	on						Dati	e Feb	ruary 10,	20	04	
City B	utler, P	A			0	ur Order	GM-61	9-1	0		C.P.	O8	0 7081			
Material	: Туре	TP304/T	P304 I		_	(.	X) Seam	iless	() V	Velded	BID	i Drav	vn () As	W	elded	
		ition Brig				F	inish C	Cold	Draw	m, Bri	ght	Annea	iled & Pa	ssiv	vated	
		ASTM-A									-					
Ship To City									Each		n thi	s order	has been			
		was manufac	tured and	1				Siz	e							
shipped fro	m Clarksv	nile, AK.				O.D.		I.D			Val	1	Length			
Heat Numb	er A	139180			.75	0"				.095			20'0"			
	%C	%Mn	%P	%S		%Si	Chemica		lysis Cr	%M	<u> </u>	%Ti	%CB+	TA	%Fe	%N
Ladle	.016	1.72	.027	,003		.42	9.18		.42	.503						.0701
Prod.	019	1.71	.026	.004		.43	9.25	18	.54	.500						.0724
	%Cu	%Co	%AI	Nb-	TA	%Nb	%TA	1%	A(+Ti	%Съ	Nъ	%Сь				
Ladle	.43	.120														
Prod.	.42	.130	<u> </u>			<u> </u>		ᆚ		<u></u>		<u> </u>			Í	
Tensile Strength (PS	1) Se	Yield rength (PSI)		langation in 2"	E	Mec)	anical end	Non-E	Destructi	ve Tests	Ну	dro Test				Air Ten
36,171 36,868		,953 ,043	62 61		p	ASSED										
Iardness	Bend		e Bend		т.	Mech Reverse Flat	Flore	ructiv	e and Ot	her Tosts	Comic	Size	Other Tests			
LB 79/80) Beno	Nevers	e Dene	r withe	┥		Passed	-	Passed		-					
UB /9/80	<u>.i</u>	AS	TM-A-26	2, Practice		Corresion To			1 25500				L			
A)		_ (B)				(C)			((D)				Œ.) ——	
ORPORATI	IC:N"	THAT THE HE	mcy in th	en amount	of lubi	ing must be re	parted with	in 24 !	hours all	er receipt	by c	ustomer.		יד א	HE RECOR	DS OF THIS
		Greenville T rnclling alluj			materi	ial used for th	e P.O. No. s	ib tod	ebove is	(Per Pron	1		4/1	1)	N
		Si	gned:								Q	4h	4/1	\mathcal{Q}_{i}	19C)	Ž
				Robert Quality		trol Mgr/M	etallurgio	al Er	g	Cathy Quality		ole ntrol	.95t.			
n	C. REVIE	WED														
-		-1-														

MAOL: .TIMI

04/22/2004 From: MARMON/KEYSTONE M/K OR: 80-8388 C P.O.: VERBAL DON

TO: HAM-LET USA INC

Page No. Q-5 Test Report No. 50666-01

03/01/2004 From: MARMON/KEYSTONE M/K OR:80-004883 C P.O.:VERBAL/DON

INIT. : CAM

To: HAM-LET USA INC

GREENVILLE TUBE P.O. Box 30 Greenville, PA 16125 REPORT OF TESTS

Phone (724)-588-6300 Fax (724)-588-1492

Customer Mar	mon Keyst	one Corp	oration				Date	Oct	ober 03, 200	3	
City Butler, PA				Order	GL-934	2-8	C.P.	O. <u>8</u> 0) 49786		
Material: Type	TP304/TI	P304 L		(X) Seaml	ess () W	Velded and	Drav	vn () As W	elded	
									led & Passiv		
Spec.	ASTM-A	-269-02	a/A-213-	-03a/SA-2	.13-01(E	\W)/in a	ccordance	with 1	EN10204 3.1	.B	
Ship To City							Tube on this rographicall				
Material on this orde		tured and			,	Size					
shipped from Clarks	ville, AR.			O.D.		I.D.	Wall		Length		
Heat Number	1P667		.5	00"			.065"		20'0"		
104.5	0/3.5	%P	%S	l%Si	Chemical %Ni	Analysis	%Mo	%Ti	%CB+TA	%Fe	%N
Ladle .026	%Mn 1.81	.030	001	30	9.15	18.11	.115	1			.029
Prod022	1.82	.031	.003	.33	9.20	18.29	.125 .				.029
%Cu	l%Co	1%A1	Nb+TA	%Nb	%TA	%Al+Ti	%Cb+Nb	%Cb			
Ladle 185	.172										
Prod200	.166									<u> </u>	
Mechanical and Non-Destructive Tests Air Test											A in The of
Tensile Yield % Elongation Eddy Current Hydro Test Strength (PSI) Strength (PSI) in 2" Hydro Test											Air rest
	4,661 6,163	60 61		PASSED			and the same of th				
					chanical Desti	uctive and O		n Size	Other Tests		
Hardness Bend	Rever	se Bend Fl	ange	Reverse Flat					Caler 1550		
*RB 67/69		VTD 1 4 262	P	Corrosion	Passed	Passe	<u> </u>				
		TM-A-262,									
(A)	(B)			(C)		-	(D)		(E)	
"I HEREBY CERTIFY CORPORATION" Important Not	Greenville Greenville melting allo	ancy in then	amount of to s that the ma	ubing must be terial used for	reported with	in 24 hours a		ustomer	How	C. REV	
*RB converted from 30)-T Scale.		Quality C	ontrol Man	ager / Meta	Illurgical E	ngineer				

Page No. Q-6 Test Report No. 50666-01

03/01/2004 From: MARMON/KEYSTONE

M/K OR:80-004883 C P.O.:VERBAL/DON INIT. :CAM

To: HAM-LET USA INC

GREENVILLE TUBE P.O. Box 30 Greenville, PA 16125 REPORT OF TESTS

Phone (724)-588-6300 Fax (724)-588-1492

Custome	r M	armo	n Keys	tone (Corpor	ation				I	Date	Nov	ember 7, 20	03	
City Bu							ır Order	GL-9638	3-2	(C.P.O.	. 80	49805		
Material			P304/7	P304	L		(2	() Seamle	ess () W	/elded	and I	Draw	n () As We	elded	
						d	Fi	inish Co	ld Draw	n, Brig	ght A1	nnea	led & Passiv	ated	
	Spe	ec. A	ASTM-	A-269	-02a/A	\-213-0)3a/SA-21	13-01(EA	W)/in ac	ccorda	nce w	rith E	EN10204 3.1	.В	
Ship To M	farmo								Each		a this c	order	has been		
Material on			s manufa	ctured a	nd			S	ize						
shipped fro	m Clar	ksville	, AR.				O.D.	I	.D.	V	Vall		Length		
Heat Numb	er	102	200			.50	0"			.065"		-	20'0"		
					·		%Si	Chemical .	Analysis	%Mo	. 0	%Ti	%CB+TA	%Fe	%N
	%C		%Mn 1.63	%P		%S 001	.41	9.24	18.30	.160		/ U = X		1,02,0	-063
Ladle Prod.	.017		1.61	.025		003	.39	9.32	18.41	.157					
Prou.	%C		%Co	%A	1	Nb+TA	%Nb	%TA	%Al+Ti	%Cb+	-Nb 9	%Съ			
Ladle	.300		.180												
Prod.	.286		.171	1			-								
Mechanical and Non-Destructive Tests Mechanical and Non-Destructive Tests Air Test															
Tensile Strength (PS	SI)		(ield gth (PSI)	%	6 Elongat in 2"	ion E	Eddy Current Hydro 1881								
82,387 83,602		34,00		62 66		F	PASSED								
		L					Med	hanical Destn	etive and O	ther Tests			1		
Hardness	Ber	nd	Rev	erse Beno	i Flang	e	Reverse Flat	Flare	Flat		Grain S	Size	Other Tests		
RB 74/76						The state of the s		Passed	Passe	d					
					-262, Pra		Corrosion T				<u> </u>				
(A)			(B) _				(C)			(D) _			`)	
	117 60 128		Any discr Greenvill melting a	epancy is Tube cont	n then an ertifies th amination	ount of tub at the mate	oing must be regial used for the	enorted within	24 hours a	ster receir	t by cus	tomer.	,o.,	C. REV	IEWED PJL
				Signe		bert Rya		ユビ	KK		y Rocc		<u> </u>		A CONTRACTOR OF THE PARTY OF TH
							ntrol Mor/N	Metallurgic	al Eng		ty Con		Asst.		

Page No. R-1 Test Report No. 50666-01

ATTACHMENT R INSTRUMENTATION EQUIPMENT SHEETS

Page No. R-2 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DAT TEC	E: HNICIAN:	3/ 8/0 J.BR.)4 AZIER	JOB NUN CUSTON		50666 HAM-	LET			TEST AREA: ENV TYPE TEST: TUBE				
NO.	INSTRUMENT		MANUFACTURER	MODEL #	SERIA	.L #	WYLE #	RANGE	ACCUR	ACY	CAL DATE	CAL DUE		
1 2	TORQUE WRE			502CF-II 2503CF-II	02038 08038		110121 117991	5 to 50FT/LBS 25 to 250 FT/L		Ų	6/10/03 9/19/03	6/ 9/04 3/17/04		

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

ISTRUMENTATION J. Browsies 3-8-0

CHECKED & RECEIVED BY

3-8-04

WH-1029A, REV, APR '99

Page No. R-3 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

	DATE: 3/11/04 TECHNICIAN: J.BRAZIER		JOB NUMBER: 50666 CUSTOMER: HAM-LET				K TECH 1 E FITTING-PNEUMATI		
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1 2	DMM PRESSURE XDUCE STOP WATCH	KEITHLEY SENSOTEC ACCUSPLIT	179A A-105/0287-22G 725MX	480740 979993 N/A	108696 110122 113824	MULTI 10000 PSIG 10HR	MFG MFG .5SEC	5/ 8/03 11/26/03	5/ 7/04 11/25/04
4 5	STRAIN PWR COND STRAIN	VISHAY VISHAY	2110 2120	21804 34430	011603 000420	15VDC GAIN	1%REG 2%	10/27/03 1/12/04 1/12/04	4/23/04 7/ 9/04 7/ 9/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

INSTRUMENTATION

_CHECKED & RECEIVED BY

polil E scram abrada

Page No. R-4 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

	DATE: 3/12/04 TECHNICIAN: H.FOSTER		JOB NUMBER: 50666 CUSTOMER: HAM-LET					ENV . WEST HYDRO	1
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURA	CY CAL DATE	CAL DUE
1 2 3 4	PRESSURE XDUC STOP WATCH STRAIN PWR DMM	E SENSOTEC ACCUSPLIT VISHAY KEITHLEY	A-105/0287-22G 725MX 2110 179A	979993 N/A 21804 480740	110122 113824 011603 108696	10000 PSIG 10HR 15VDC MULTI	MFG .5SEC 1%REG MFG	11/26/03 10/27/03 1/12/04 5/ 8/03	11/25/04 4/23/04 7/ 9/04 5/ 7/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Starpdards and Technology.

INSTRUMENTATION 4

_CHECKED & RECEIVED BY

Q.A. Banda Mouse

2 12 You

Page No. R-5 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DAT TECI	5.1.			NUMBER: 50666 FOMER: HAM-LET				NV WEST IPULSE	1
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1 2 3	PRESSURE XDUC COND STRAIN STRAIN PWR	E SENSOTEC VISHAY VISHAY	A-105/0287-22G 2120 2110	979994 34430 21804	110123 000420 011603	10000 PSIG GAIN 15VDC	MFG 2% 1%REG	11/26/03 1/12/04 1/12/04	11/25/04 7/ 9/04 7/ 9/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

INSTRUMENTATION James Bazic 3-15-04 CHECKED & RECEIVED BY Dan 15-5

Page No. R-6 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DAT	5.1.	5/04 RAZIER	JOB NUME CUSTOME		LET			WEST (FATIGUE	1
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1	RECORDER	ASTROMED	DASH10	96B0192	113860	50m-500V	1%FS	12/13/03	6/10/04
2	COND STRAIN	VISHAY	2120	18788	011065 »	GAIN	2%	12/19/03	6/16/04
3	COND STRAIN	VISHAY	2120	73356	104111 *	GAIN	2%	12/19/03	6/16/04
4	COND STRAIN	VISHAY	2120	18778	011058 -	GAIN	2%	12/19/03	6/16/04
5	COND STRAIN	VISHAY	2120	18791	011068 •	GAIN	2%	12/19/03	6/16/04
6	COND STRAIN	VISHAY	2120	21382	011610 -	GAIN	2%	12/19/03	6/16/04
7	STRAIN PWR	VISHAY	2110	N/A	096299	15VDC	MFG	12/19/03	6/16/04
8	METER	OMEGA	DP2000A	7360089	116654 -	DC VOLTS	MFG	1/ 9/04	7/ 7/04
9	METER	DIGITEC	2812A-03	07482238	108006 -	20VDC	MFG	1/ 9/04	7/ 7/04
10	METER	SIMPSON	2840	4509	114447	20VDC	.02%	1/ 9/04	7/ 7/04
11	METER	SIMPSON	2840	2611	116657 -	20VDC	.02%	1/9/04	7/ 7/04
12	DMM	KEITHLEY	178	10889	011312 ,	MULTI	MFG	12/13/03	12/10/04
13	DMM	KEITHLEY	179	34120	003504	MULTI	MFG	12/22/03	12/21/04
14	DMM	KEITHLEY	178	1261	011478 -	MULTI	MFG	12/22/03	12/21/04
15	DMM	KEITHLEY	179	31950	000857	MULTI	MFG	12/22/03	12/21/04
16	PRESSURE XDUCE	SENSOTEC	A-105/0287-22G	979997	110162 ·	10000 PSIG	MFG	12/29/03	12/28/04
17	PRESSURE XDUCE	SENSOTEC	A-105/0287-22G	978581	110163	10000 PSIG	MFG	12/29/03	12/28/04
18	PRESSURE XDUCE	SENSOTEC	A-105/0287-22G	847558	110161 -	10000 PSIG	MFG	12/29/03	12/28/04
19	DMM	KEITHLEY	178	14967	092680 (MULTI	MFG	1/9/04	7/ 7/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

INSTRUMENTATION James 3-16-04 CHECKED & RECEIVED BY Delice Baf 3/16/0

Q.A. Alfled 3/16/04

WH-1029A. REV. APR '99

Page No. R-7 **Test Report No. 50666-01**

INSTRUMENTATION EQUIPMENT SHEET

DAT! TEC!		i/04 RAZIER	JOB NUME		6 I-LET		-	ENV. WEST ROTARY FLEX	1
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURAC	Y CAL DATE	CAL DUE
1	METER	SIMPSON	2840	002451	100947	20VDC	.02%	3/10/04	9/ 6/04
2	METER	SIMPSON	2840	2875	100945	20VDC	.02%	3/10/04	9/ 6/04
3	METER	SIMPSON	2840	2407	108948	20VDC	.02%	3/10/04	9/ 6/04
4	PRESSURE XDUCE	SENSOTEC	A-10/0287-22G	847568	110160	10000 PSIG	MFG	12/29/03	12/28/04
5	PRESSURE XDUCE	SENSOTEC	A-105/0287-22G	979993	110122	10000 PSIG	MFG	11/26/03	11/25/04
6	DMM	KEITHLEY	179	34123	100056	MULTI	MFG	12/13/03	12/10/04
7	DMM	KEITHLEY	178	10829	011313	MULTI	MFG	12/13/03	12/10/04
8	DMM	KEITHLEY	179A	480740	108696	MULTI	MFG	5/ 8/03	5/ 7/04
9	STRAIN PWR	VISHAY	2110A	112620	112829	15 VDC	MFG	12/ 2/03	5/28/04
10	COND STRAIN	VISHAY	2120A	122577	112834	GAIN	MFG	12/ 2/03	5/28/04
11	COND STRAIN	VISHAY	2120A	122588	112831	GAIN	MFG	12/ 2/03	5/28/04
12	COND STRAIN	VISHAY	2120A	122601	112832	GAIN	MFG	12/ 2/03	5/28/04
13	STOP WATCH	ACCUSPLIT	725MX	N/A	113823	10HR	.5SEC	3/12/04	6/10/04
14	TACHOMETER	EXTECH	461895	L548408	113948	5-99.999RPM	.05%+1D	11/12/03	5/10/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

Brazie 3-16:04 CHECKED & RECEIVED BY Dury By 3/16/04

Page No. R-8 **Test Report No. 50666-01**

INSTRUMENTATION EQUIPMENT SHEET

DATE: TECHNICIAN: 4/15/04 J.BRAZIER JOB NUMBER: CUSTOMER:

50666 HAM-LET TEST AREA: ENV WEST

TYPE TEST: PNEUMATIC

1

NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1 2	STOP WATCH	ACCUSPLIT	725MX	N/A	113823	10HR	.5SEC	3/12/04	6/10/04
	PRESSURE GAGE	DRUCK	DPI260	2604211302	117325	0 to 1000 PSI	±0.25%FS	4/15/04	7/14/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

Page No. R-9 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DATI TECH		6/04 BRAZIER	JOB NUMBER: 50666 CUSTOMER: HAMLET			TEST AREA: TYPE TEST:		ENV WEST HYDROSTAT PROOF	
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1 2 3	PRESSURE XDUC STOP WATCH DMM	E SENSOTEC ACCUSPLIT KEITHLEY	A-105/0287-22G 725MX 179A	979993 N/A 480740	110122 113824 108696	10000 PSIG 10HR MULTI	MFG .5SEC MFG	11/26/03 10/27/03 5/ 8/03	11/25/04 4/23/04 5/ 7/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

INSTRUMENTATION AMES Brigis 4-16-04 CHECKED & RECEIVED BY Decent Buf 4/16/04

Q.A. Bonda Marco 4 III 104

Page No. R-10 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DATI TECH		7/04 RAZIER	JOB NUME CUSTOME		50666 HAM-L	.ET			ENV WEST ROTARY FLEX	1
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAI	L #	WYLE #	RANGE	ACCURAC	CY CAL DATE	CAL DUE
1	DMM	KEITHLEY	178	10829		011313	MULTI	MFG	12/13/03	12/10/04
2	DMM	KEITHLEY	179	34123		100056	MULTI	MFG	12/13/03	12/10/04
3	COND STRAIN	VISHAY	2120A	12257	7	112834	GAIN	MFG	12/ 2/03	5/28/04
4	DMM	KEITHLEY	179 A	48074	0	108696	MULTI	MFG	5/ 8/03	5/ 7/04
5	PRESSURE XDUCE	SENSOTEC	A-105/0287-22G	97999	3	110122	10000 PSIG	MFG	11/26/03	11/25/04
6	STOP WATCH	ACCUSPLIT	725MX	N/A		113824	10HR	.5SEC	10/27/03	4/23/04
7	TACHOMETER	EXTECH	461895	L5484	80	113948	5-99.999RPM	.05%+1E	11/12/03	5/10/04
8	STRAIN PWR	VISHAY	2110A	11262	0	112829	15 VDC	MFG	12/ 2/03	5/28/04
9	COND STRAIN	VISHAY	2120A	12258	8	112831	GAIN	MFG	12/ 2/03	5/28/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

ISTRIMENTATION JAMES BROWLES 4-19-04 CHECKED & RECEIVED BY

O.A

Page No. R-11 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DATI TECH		'19/04 BRAZIER	JOB NUMBER: CUSTOMER:		: 50666 HAM-LET		TEST AREA: TYPE TEST:		WEST K FATIGUE	1
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL	# WYLI	# RANGE	ACCUR	ACY	CAL DATE	CAL DUE
1	PRESSURE XDU	CE SENSOTEC	A-105/0287-22G	978581	11016	3 10000 PS	IG MFG		12/29/03	12/28/04
2	DMM	KEITHLEY	178	1261	01147	8 MULTI	MFG		12/22/03	12/21/04
3	DMM	KEITHLEY	178	10889	01131	2 MULTI	MFG		12/13/03	12/10/04
4	DMM	KEITHLEY	178	14967	09268	0 MULTI	MFG		1/ 9/04	7/ 7/04
5	RECORDER	ASTROMED	DASH10	96B019	11386	0 50m-500°	V 1%FS		12/13/03	6/10/04
6	COND STRAIN	VISHAY	2120	18791	01106	8 GAIN	2%		12/19/03	6/16/04
7	COND STRAIN	VISHAY	2120	73356	10411	l GAIN	2%		12/19/03	6/16/04
8	STRAIN PWR	VISHAY	2110	N/A	09629	9 15VDC	MFG		12/19/03	6/16/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

NSTRUMENTATION James Bragies 4-19-04 CHECKED & RECEIVED BY Que 4/20/89

Page No. R-12 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DATI TECH		/04 RAZIER	JOB NUME CUSTOME)666 AM-LET		TAREA: E TEST:	ENV WEST IMPULSE 1"&3/4	1
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURA	CY CAL DATE	CAL DUE
1	PRESSURE XDUCE	SENSOTEC	A-105/0287-22G	979994	110123	10000 PSIG	MFG	11/26/03	11/25/04
2	COND STRAIN	VISHAY	2120	34430	000420	GAIN	2%	1/12/04	7/ 9/04
3	COND STRAIN	VISHAY	2120	34485	000422	GAIN	2%	1/12/04	7/ 9/04
4	STRAIN PWR	VISHAY	2110	21804	011603	15VDC	1%REG	1/12/04	7/ 9/04
5	PRESSURE XDUCE	SENSOTEC	A-105/0287-23	987644	110227	15000 PSI	±0.1%	1/20/04	1/19/05

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

NSTRUMENTATION James Brazile 4-21-04 CHECKED & RECEIVED BY

And I and

Page No. R-13 **Test Report No. 50666-01**

INSTRUMENTATION EQUIPMENT SHEET

DAT		3/04 LUNGHOFER	JOB NUMB CUSTOME		0666 AM-LET			LOW H TEMP THEF	1 RMO CYC
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1	PRESSURE XDUCI	E SENSOTEC	TJE/0743-01TJG	734820	115686	2000PSIG	.1%FS	3/23/04	6/21/04
2	MEGADAC	OPTIM	ADC5616/5414ac	A7563-03	113803	16BITS	.01%FS	12/4/03	12/3/04
3	T/C MODULE	OPTIM	AD816TC	A6277-08	113739	K TC	1 DEG F	12/4/03	12/3/04
4	INPUT CARD	OPTIM	AD682SH-1	A3303-07	117167	GAIN	MFG	12/4/03	12/3/04
5	JACK PANEL	OPTIM	PL2181	A7493-06	113742	TYPE K	.02*C	12/4/03	12/3/04
6	PRESSURE GAGE	HEISE	ST-2H	50807	116866	MFG	.025%	11/3/03	11/2/04
7	PRESSURE MODU	L HEISE	HQS-2	19968	116867	3000PSI	.025%	11/3/03	11/3/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

Page No. R-14 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DAT)		/04 ATTERSON			V CH 34 EVATED TEMP	1			
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1	TEMP RECORDER	HONEYWELL	DR450T	903079261800	108673	-200-600°F	.4°F	4/15/04	7/14/04
2	CONTROLLER	WATLOW	945	NA	113655	MFG	MFG	4/15/04	7/14/04
3	TEMP CONTROLLI	E WATLOW	942A-2CC2-A00	NA	110129	-328 to 662°F	±0.1%	4/15/04	7/14/04
4	PRESSURE GAGE	HEISE	600	H19689	092513	600PSI	.5%FS	5/10/04	8/ 6/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

INSTRUMENTATION

CHECKED & RECEIVE

Pik Machlum 5/12/0

Page No. R-15 Test Report No. 50666-01

INSTRUMENTATION EQUIPMENT SHEET

DATE: TECHNICIAN:		6/ 3/04 J.PATTERSON	JOB NUI CUSTON	50000			AREA: ENV E TEST: HYD	LAB ROSTATIC B	1 URST
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1 2 3	STOP WATCH POWER SUPPL DMM	VWR Y TOPWARD FLUKE	62379-218 2601 87 III	230125647 936943 78370405	117532 109884 116685	10HR 60V/1A 4vdc,ac,ohms	±0.5SEC .1%REG .05%,1%,.2%	10/ 5/03 1/ 6/04 7/11/03	10/ 5/04 7/ 2/04 7/ 9/04

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

INSTRUMENTATION

WH-1029A, REV, APR '99

٠.

Q.A